
CSCI 1321 September 12, 2006

Slide 1

Administrivia

• Please do not reboot the machines in HAS 340! If a previous user has left a

machine in the “locked by screensaver” state, you can bail out by pressing

control-alt-backspace to restart X (the graphical subsystem) without

disturbing background processes.

• Are your prox cards giving you access to the labs? Supposedly all known

problems have been resolved.

• Reminders:

Homework 1 design due today at 11:59pm. (“Turn in” by sending me mail

saying your game is ready to grade. Putting “csci 1321” or similar in the

subject line helps me not misplace your message!)

Homework 1 code due Thursday. Open lab today and tomorrow. After today’s

lecture you should know enough.

• Details for all homeworks on Web now; Homework 2 due next week.

Slide 2

UML Class Diagrams

• “Unified Modeling Language” — formal graphic representation of software

analysis and design.

Many types of diagrams, some of which you’ll probably encounter in other

courses. Tools exist for drawing them, but worth noting that they were

designed to be whiteboard-friendly.

• We will mainly use class diagrams:

– Box representing a class has name, attributes, operations.

– Subclass points to its superclass (represents the path to follow to figure

out inheritance).



CSCI 1321 September 12, 2006

Slide 3

Inheritance (Short Version)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in

turn have a superclass . . . ).

• Subclasses also form “subtypes” — e.g., if CheckingAccount is a

subclass of Account, can use a CheckingAccount anywhere we

need a Account.

Slide 4

Polymorphism (Short Version)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Accounts should work on

CheckingAccounts, SavingsAccounts, . . .



CSCI 1321 September 12, 2006

Slide 5

Intermezzo — Immutable Objects

• Some classes are “immutable” — once created, objects can’t be changed.

Example — String — if you look at the API, you notice that methods that

“change” the string actually return a new one.

• This sounds inconvenient, right? What advantages might it have?

Slide 6

Inheritance and Code Reuse

• If class Account defines

private double balance;

public double getBalance();

then if SavingsAccount is a subclass of Account,

SavingsAccount also has variable balance and method

getBalance.

• This can be a good way to reduce code duplication.

• If it’s not what you want, subclasses can “override” methods (or variables —

but this is not usually a good idea).

• Or a superclass can leave methods unimplemented; subclasses must then

define — for Account, addInterest could be abstract.



CSCI 1321 September 12, 2006

Slide 7

Inheritance and Subtypes

• In the “shapes” example, class Account defines a type, and

SavingsAccount and CheckingAccount are subtypes. Anywhere

we need a Account, we can use a SavingsAccount — e.g.,

Account s = new SavingsAccount();

(but not SavingsAccount s = new Account();)

• So we could have an array of Accounts, whose elements could be

SavingsAccounts or CheckingAccounts. (More about arrays

soon.)

Slide 8

Multiple Inheritance Versus Interfaces

• What if you want a class to inherit from multiple classes? C++ allows this

(“multiple inheritance”). To avoid possible confusion/ambiguity, Java doesn’t.

• Instead, define “interfaces” — classes in which all methods are abstract.

• In Account example, we could define a HasPersonName interface with

method getPersonName. Not obviously useful — unless there’s another

kind of object that could have a person’s name but shouldn’t be a subclass of

Account. (A prospective customer?)

• A class can “implement” as many interfaces as you like.



CSCI 1321 September 12, 2006

Slide 9

Interfaces and Types

• Interfaces also define types. So if Account implements interface

HasPersonName, we can use a Account anywhere a

HasPersonName is required.

HasPersonName o = new Account();

• This is “inclusion polymorphism” — and is what will allow your project code to

plug neatly into Dr. Lewis’s framework. (The framework is written in terms of

interfaces such as Block and Screen; your classes will implement those

interfaces.)

Slide 10

A Few Words About Generics

• Java library has many useful “container classes” (for vectors, sets, linked lists,

etc.) that can hold any kind of object — which is useful, but also sometimes

inconvenient (e.g., no way to say “I want a vector of Accounts only”).

• A solution — Java “generics”, new with 1.5/5.0.

• Syntax uses angle brackets, e.g., a Vector that can hold only Accounts:

Vector<Account> v = new Vector<Account>();

• Most of Dr. Lewis’s game framework uses this feature — e.g., in Homework 1

you need not a MainFrame object but a

MainFrame<BasicBlock, BasicEntity>

object.



CSCI 1321 September 12, 2006

Slide 11

Minute Essay

• None — sign in.


