
CSCI 1321 September 14, 2006

Slide 1

Administrivia

• Remember that code from class will be on Web shortly after class (as soon as
I can get it there).

• Homework 1 code due today. Updated/corrected JAR file on Web; please
download a copy and replace the one you have.

Feedback on designs coming ASAP (by e-mail).

Slide 2

More Administrivia

• Homework 2 design due next Tuesday. As with Homework 1, “design” just
means you have to sketch the outlines — classes, methods — and write
comments for the HTML-generating tool. You can fill in variables and code in
the “code” phase.

• First quiz next Tuesday. Open book, open notes; also okay to use Java library
documentation on Web (just not random Web searches).

Likely kinds of questions: “What does this code do?” “Write some code to do
this.”



CSCI 1321 September 14, 2006

Slide 3

Recap — Inheritance

• Many/most object-oriented languages (e.g., Java) allow definition of
hierarchies of classes.

• Subclasses inherit methods and variables from their superclass (and its
superclass, and so on). This helps with code reuse.

• Subclasses are subtypes of class type. This makes some kinds of
polymorphism easy.

Example — Shape class in a drawing program provides a nice way to
abstract out common features (e.g., a draw method) while leaving
implementation up to subclasses (for circles, rectangles, etc.).

• Classes can be abstract — means at least one method is abstract (no
implementation). Subclasses must define abstract methods (unless . . . ?).

Slide 4

Recap — Interfaces

• Java defines notion of “interface” as essentially a class with no instance
variables and only public abstract methods.

• Point is to define a “contract” — any object that implements interface Foo has
a particular set of methods. Useful in writing library classes that can work on
any kind of objects, as long as they provide certain methods (the “contract”).

• Bank example from last time is contrived, but revised version on Web is better
than code from Tuesday.

• Better example — Java library interface Comparable and its use in
Arrays class.



CSCI 1321 September 14, 2006

Slide 5

Packages and Importing

• Library classes grouped into “packages” — e.g., java.util,
java.net.

• For classes in java.lang and “default package”, reference using their
names only. For other classes, can use full name or import. (import
looks like #include, but works differently.)

• You can define your own packages. Convention is to use your e-mail/Web
address, in reverse order (e.g., Dr. Lewis’s framework is
edu.trinity.cs.gamecore). For your game, I’m recommending
edu.trinity.cs.yourusername. You could add pad2game if
you wanted to.

• Tip: When writing code with Eclipse, if it can’t find a particular class because
it needs an import, select the reference to the class and press
shift-control-M and it will try to generate an appropriate import.

Slide 6

Generics, Revisited

• Java library includes classes for collections of things (Vector, e.g. — like
an expandable array). Originally, could put any kind of Object in one of
these. Nice, except that then there’s no way to know anything about types of
objects inside except by using reflection (much later, if at all) or
instanceof operator. Must also use explicit casts to do much with
objects retrieved from collection.

• So in Java 1.5 (a.k.a 5.0), there are “generics” — Java’s answer to C++
template classes, though not exactly the same. Idea is to allow you to
specialize a collection — so, a Vector of Integer objects only, or a
Vector of Account objects only, etc., etc.

• Let’s do an examples . . .

• Let’s also look at API for MainFrame in the game framework . . .



CSCI 1321 September 14, 2006

Slide 7

Minute Essay

• Write Java code to create a Vector to hold Strings, put into it
Strings "hello" and "goodbye", and print both Strings.

Slide 8

Minute Essay Answer

• These lines would work:

Vector<String> v1 = new Vector<String>();
v1.add("hello");
v1.add("goodbye");
System.out.println(v1.elementAt(0));
System.out.println(v2.elementAt(1));


