
CSCI 1321 September 19, 2006

Slide 1

Administrivia

• Reminder: Homework 2 design due today.

• Homework 2 code due next Tuesday (deadline extended).

Slide 2

Homework 2 — General Comments

• Design phase is meant to be about defining classes and interfaces. For every

class (or interface) and every method, I want comments (can be be brief). For

classes, these should describe (to the best of your understanding) how they

fit into your game (e.g., “class for wall blocks”).

• In order to generate the HTML documentation (“javadoc”), probably have to

have something minimally compilable. As suggested in assignment — create

skeleton/stub versions of methods, and fill in real code in code phase.

• Be sure to get the updated JAR file (should have name

PAD2F06Assn2.jar). With every assignment there will be a new JAR

file, as you replace various parts of the starter code with your code.

• Method instance in BasicGameSetup mentions “singleton”. What’s

that about? Reference to “singleton design pattern” — idea that for some

classes there should only ever be one instance.



CSCI 1321 September 19, 2006

Slide 3

Homework 2 — Design

• Interfaces YourBlock, YourEntity: In project API, referred to as

“general block type” and “general entity type”. You will use these as

replacements for BasicBlock and BasicEntity, and everywhere

else you use one of the framework’s generic classes.

• Player and game setup classes. Copy code from BasicPlayer and

BasicGameSetup and edit (change package line, block and entity

types). May want to change game setup more during code phase. Also edit

your main class from the first assignment.

Don’t worry about player for now — you will start writing your own in the next

assignment.

Slide 4

Homework 2 — Design Continued

• Block class(es). These are blocks that make the playing field for your game.

Should have one class for each kind of block (floor, walls, ladders, anything

that doesn’t move). Try to define as many as you can. Copy code from

BasicBlock.

• Screen class (class implementing Screen interface). This is the most work

in this assignment. Eclipse can make stub methods for you. Copy and paste

comments from API.



CSCI 1321 September 19, 2006

Slide 5

String Class — Example of Using a Class

• In C, “strings” are just arrays of characters, terminated by null character. In

Java, there’s a library class, String.

• To see what’s available, look at the API . . .

Slide 6

String Class, Continued

• In general, no operator overloading in Java, with one exception — “+” for

strings. Non-string objects converted using (their) toString method.

Primitives converted in the “obvious” way.

• To compare two strings, “==” is rarely what you want. Instead, use equals.

• Strings are “immutable” — once created, can’t be changed. (Why? allows

them to be safely shared.) Methods you would think might change the value

return a new string.

• Use StringBuffer if you need something you can change, or for

efficiency.

• Let’s do some examples . . .



CSCI 1321 September 19, 2006

Slide 7

Defining a Class

• What methods do I need? If implementing an interface, you at least need the

methods in the interface. May want additional methods. If making a subclass,

remember you automatically inherit all methods from superclass. Can

override them and/or provide additional methods.

• What variables do I need to implement the needed methods? e.g., if defining

a Rectangle class that has a getArea method, probably need either

area or width and height.

Slide 8

Minute Essay

• None — quiz.


