
CSCI 1321 September 26, 2006

Slide 1

Administrivia

• Reminder: Homework 2 code due today.

• Homework 3 due dates on Web (design a week from today, code next

Thursday).

• The “generate HTML documentation” Eclipse option probably won’t work for

you on most of the machines in HAS 200. A workaround is to log into one of

the machines in HAS 340 remotely and use Eclipse there. Sample command

to do that:

ssh -X xena21

• (Review minute essay from last time.)

Slide 2

Homework 2 Code

• Eclipse will suggest adding a variable called serialVersionUID to

some of your classes. Do that. (Notice there’s one of these in some of the

provided code.) Value can be anything. We will talk later about what this

means and how to make use of it.

• Notice that x/y coordinates of framework are opposite of row/column.

getSize() in screen class should return width by height.

• To confirm that your code works:

– Start the game, and verify that the playing field is what you defined

(dimensions, plus appearance of blocks — for now, I recommend solid

colors).

– Try running the screen editor (directions in “project description” document).

If it comes up, and shows all the kinds of blocks you defined, all is well.

(Actually it doesn’t have to do that if you don’t plan to use it — it just has to



CSCI 1321 September 26, 2006

Slide 3

not crash.)

Slide 4

Sorting and Searching Arrays

• A common thing to do with arrays is sort them. (Remember this from PAD I?)

• Various algorithms for sorting and searching. Some fast, some slow; some

simple, some complex. Decide which to use based on considerations of

simplicity versus speed.

• “Speed”? Yes, but expressed as order of magnitude (“big-oh notation”).



CSCI 1321 September 26, 2006

Slide 5

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 6

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1321 September 26, 2006

Slide 7

Simple (but Slow) Sorts

• Bubble sort. (First pass goes through the whole array, swapping consecutive

elements if out of order, so largest element bubbles to the end. Next pass

goes through all elements but last. And so forth.)

• Selection sort. (First pass finds largest element and puts it at end. Next pass

finds next-to-largest element and puts it at next-to-end. And so forth.)

• Insertion sort. (First pass inserts second element into list of first element.

Next pass inserts third element into list of first two elements. And so forth.)

• All of these are O(N2). And there are others . . .

Slide 8

Other Sorts

• Quicksort (to be discussed later). O(N log N).

• Mergesort (to be discussed later). O(N log N).

• Many others . . .



CSCI 1321 September 26, 2006

Slide 9

Searches

• Sequential search. O(N).

• Binary search. O(log N).

Slide 10

Sorting and Searching — Example Code

• Let’s write some code . . . (for “instrumented sort” — count number of

comparisons).



CSCI 1321 September 26, 2006

Slide 11

Sorting and Searching Arrays in Java

• Arrays class has some useful methods.

• One thing that’s nice about Java is “polymorphic sorting”; can sort objects of

any class that implements Comparable.

Slide 12

Minute Essay

• None — quiz.


