
CSCI 1321 September 28, 2006

Slide 1

Administrivia

• Reminder: Quiz 3 next Tuesday.

• Reminder: Homework 3 design due next Tuesday.

• Code from Tuesday on Web, plus additional sorting/searching examples.

Slide 2

More About Arrays and Sorting

• In “instrumented sort” from last time, it might seem that Sorter and

subclasses should be generic classes. This can be done, but is somewhat

messy (several compile-time warnings) because of how generics are

implemented under the hood.

• Writing your own sorting routines is pedagogically useful, but in practice you

would probably use something from Java library.

• For arrays — Arrays.sort makes sense. Different versions

(“polymorphism”) allow sorting in “natural order” or in order you specify.

Example: case-insensitive sorting of strings.

CSCI 1321 September 28, 2006

Slide 3

Homework 3

• In this homework you start writing code for your player, to replace the stick

figure in the starter game.

• Key parts of this assignment are making the player

– interact with different kinds of blocks.

– move in response to keyboard or mouse input from human player.

(If these don’t apply to your game, talk to me about whether there are

reasonable substitutes.)

For design phase, you just need to describe this interaction.

Slide 4

Homework 3, Continued

• Player defines some constants you should use.

• You will implement KeyListener or one/both of the mouse-listener

interfaces. When you do this, the framework will deliver key and/or mouse

“events” to you.

• Most logic will go in update, getUpdateTime, and the listener

methods.

CSCI 1321 September 28, 2006

Slide 5

Error Handling — The Problem

• When you have a function in which something goes wrong, how do you tell

the rest of the program?

• Examples:

– Calling a square-root function with a negative number.

– Trying to open (for reading) a file that doesn’t exist.

– Trying to convert a string to an integer, when the string doesn’t contain

something appropriate.

Slide 6

Error Handling — “Ostrich Approach”

• Idea — hope it doesn’t happen.

• Might sort of work if you tell users in your documentation, and maybe use

assertions.

• But users make mistakes, and what then? e.g., out-of-bounds array access.

• And it may not always be easy to tell what inputs will produce errors (e.g., file

access).

CSCI 1321 September 28, 2006

Slide 7

Error Handling — Return Codes

• Idea — have method return an error code if something goes wrong.

• Works well in situations where it might be hard to avoid sometimes causing

the error.

• But requires that users of the method check for the “error” return value —

tedious and error-prone.

• And what about methods that want to return a value? is it always possible to

designate some value as “this means an error”?

Slide 8

Error Handling — Setting Flags

• Idea — have method set a flag somewhere if something goes wrong.

• Also useful in situations where it might be hard to avoid sometimes causing

the error.

• Again, though, users have to check.

• Requires either an extra parameter (and changing it may be tricky in Java) or

a “global” variable somewhere.

CSCI 1321 September 28, 2006

Slide 9

Error Handling — Exceptions

• Idea — when something goes wrong, “throw an exception”. What then?

• Aside — as program runs, we can think of it keeping a stack of nested

method calls (“push” when we call a method, “pop” when one returns).

• When an exception is thrown, runtime system works its way up this stack until

it finds something to “catch” the exception. If it never finds anything, it

terminates the program (actually the thread).

• Mostly this is what Java library classes use to indicate errors — but some use

return codes, so read documentation carefully.

Slide 10

Dealing With Exceptions

• Catching an exception — “try block”:

try { }

catch (TypeOfException e) { }

catch (OtherTypeOfException e) { }

finally { } // optional

• Letting an exception “bubble up”:

void foo() throws WeirdException { }

• Exception class has some useful methods, e.g.,

printStackTrace.

CSCI 1321 September 28, 2006

Slide 11

Checked Versus Unchecked Exceptions

• “Checked exceptions” — ones that sensible programs are supposed to do

something about (e.g., file not found).

Must either catch these, or declare that your method lets them bubble up (and

then callers must do likewise).

• “Unchecked exceptions” — ones for which maybe the reasonable thing to do

is to just let the program crash.

Can catch these, or let them bubble up (with or without declaration), possibly

eventually crashing the program.

Slide 12

Throwing Exceptions

• Throwing an exception:

throw new TypeOfException(....)

• Usually best to try to find an existing Exception class that fits, but can

declare your own.

• Example — withdraw method in our bank account class.

CSCI 1321 September 28, 2006

Slide 13

Exceptions Versus Other Approaches

• What’s the attraction?

– Nice mechanism for dealing with errors and unexpected events.

– Unlike return codes, can’t just be ignored.

• But checked exceptions can be annoying to deal with . . .

Slide 14

Minute Essay

• Do you have questions about the code you wrote for Homework 2?

• Here’s a line of code that can throw an exception:

String s;

double x;

/* code to get a value from the user and put in s omitted */

x = Double.parseDouble(s);

Write a few lines of code to catch the kind of exception most likely to be

thrown and print out a meaningful error message.

CSCI 1321 September 28, 2006

Slide 15

Minute Essay Answer

• First it would be useful to know kind of exception(s) could be thrown. You can

find that out from the Java library API for class Double. parseDouble

can throw a NumberFormatException, so you could write:

try {

x = Double.parseDouble(s);

}

catch (NumberFormatException e) {

System.out.println(s + " is not a number");

}

