
CSCI 1321 August 30, 2007

Slide 1

Administrivia

• Reminder: Homework 1 design (description of game) due at 11:59pm today.

• If you didn’t take CSCI 1320 here, see “Useful links” page (here) for
suggested reading about Linux and the command line (at the bottom of the
page).

Slide 2

More Administrivia

• A little more about rebooting (or not) the machines in HAS 340!

If a previous user has left a machine in the “locked by screensaver” state, you
can bail out by pressing control-alt-backspace to restart X (the graphical
subsystem) without disturbing background processes.

If you log out from the “System” menu, it might be easy to shut down by
mistake. Can put an icon on the task bar for logout to avoid this.

• Prox card access should be enabled now, so you should be able to get into
the labs after hours. (Details in mail to CSMajors mailing list — ask me if you
didn’t get it.)

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2007fall/HTML/links.html


CSCI 1321 August 30, 2007

Slide 3

Java Basics, Continued — Control Structures

• Most control structures are the same as C — if , while, do, switch,
for, etc. Also a simplified for, as of Java 5.0 (a.k.a. 1.5). More about it
later.

• Also have “exceptions” — a way to deal with unusual or error conditions,
break out of current flow of control. Can be “thrown” and “caught” (or not
caught, in which case the program crashes). More about them later.

Slide 4

Arrays, Briefly

• Syntax is like C, except for explicit new:

– int[] x = new int[10]; creates 10 integers.

– String[] args = new String[20]; creates 20 references
to strings.

• Arrays are “first-class” objects, with length variable.

• Java checks for out-of-bounds array references.



CSCI 1321 August 30, 2007

Slide 5

Miscellaneous Other Stuff

• No operator overloading (except “+” for String class).

• On reference variables, = and == operate on references, not objects. (So,
you may instead want copy constructors or equals().)

• No C-style strings, but a String class.

• A little about packages, and Java “generics” (new with 5.0), later.

Slide 6

Example

• Example — Account class.

• (This example, and most other code from class, will be on the Web, linked
from the “Sample programs” page (here).)

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2007fall/SamplePrograms/


CSCI 1321 August 30, 2007

Slide 7

UML Class Diagrams

• “Unified Modeling Language” — formal graphic representation of software
analysis and design.

Many types of diagrams, some of which you’ll probably encounter in other
courses. Tools exist for drawing them, but worth noting that they were
designed to be whiteboard-friendly.

• We will mainly use class diagrams:

– Box representing a class has name, attributes, operations.

– Subclass points to its superclass (represents the path to follow to figure
out inheritance).

Slide 8

Inheritance (Short Version)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in
turn have a superclass . . . ).

• Subclasses also form “subtypes” — e.g., if CheckingAccount is a
subclass of Account, can use a CheckingAccount anywhere we
need a Account.



CSCI 1321 August 30, 2007

Slide 9

Polymorphism (Short Version)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Accounts should work on
CheckingAccounts, SavingsAccounts, . . .

Slide 10

Minute Essay

• Make your best try at writing a method for our Account class that
computes one month’s interest and adds it to the balance. Assume
interestRate is the monthly interest.

(For minute essays where there’s a “right answer”, it will be in the final version
of the notes online.)



CSCI 1321 August 30, 2007

Slide 11

Minute Essay Answer

• See the version of Account on the “Sample programs” page (here).)

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2007fall/SamplePrograms/

