
CSCI 1321 September 4, 2007

Slide 1

Administrivia

• No class Thursday; I plan to be at a conference. If you need help with
homework, okay to ask Dr. Lewis. Open lab Thursday 3:30pm–5:30pm.

• Comments on Homework 1 coming soon by e-mail. Code due a week from
today. Notice changed recommendations about package names. (Okay to
keep what you have this time, but change for Homework 2.) More about
packages today.

• Remaining homeworks online, for those who want to know more about what’s
ahead.

• (Review minute essay from last time.)

Slide 2

Inheritance (Short Version, Recap)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in
turn have a superclass . . . ).

• Subclasses also form “subtypes” — e.g., if CheckingAccount is a
subclass of Account, can use a CheckingAccount anywhere we
need a Account.



CSCI 1321 September 4, 2007

Slide 3

Polymorphism (Short Version, Recap)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Accounts should work on
CheckingAccounts, SavingsAccounts, . . .

Slide 4

Inheritance and Code Reuse

• If class Account defines

private double balance;

public double getBalance();

then if SavingsAccount is a subclass of Account,
SavingsAccount also has variable balance and method
getBalance.

• This can be a good way to reduce code duplication.

• If it’s not what you want, subclasses can “override” methods (or variables —
but this is not usually a good idea).

• Or a superclass can leave methods unimplemented; subclasses must then
define — for Account, addInterest could be abstract.



CSCI 1321 September 4, 2007

Slide 5

Inheritance and Subtypes

• In the bank-account example, class Account defines a type, and
SavingsAccount and CheckingAccount are subtypes. Anywhere
we need a Account, we can use a SavingsAccount — e.g.,

Account s = new SavingsAccount();

(but not SavingsAccount s = new Account();)

• So we could have an array of Accounts, whose elements could be
SavingsAccounts or CheckingAccounts. (More about arrays
soon.)

Slide 6

Multiple Inheritance Versus Interfaces

• What if you want a class to inherit from multiple classes? C++ allows this
(“multiple inheritance”). To avoid possible confusion/ambiguity, Java doesn’t.

• Instead, define “interfaces” — classes in which all methods are abstract.

• In Account example, we could define a HasPersonName interface with
method getPersonName. Not obviously useful — unless there’s another
kind of object that could have a person’s name but shouldn’t be a subclass of
Account. (A prospective customer?)

• A class can “implement” as many interfaces as you like.



CSCI 1321 September 4, 2007

Slide 7

Interfaces and Types

• Interfaces also define types. So if Account implements interface
HasPersonName, we can use a Account anywhere a
HasPersonName is required.

HasPersonName o = new Account();

• This is “inclusion polymorphism” — and is what will allow your project code to
plug neatly into Dr. Lewis’s framework. (The framework is written in terms of
interfaces such as Block and Screen; your classes will implement those
interfaces.)

Slide 8

Packages and Importing

• Library classes grouped into “packages” — e.g., java.util,
java.net.

• For classes in java.lang and “default package”, reference using their
names only. For other classes, can use full name or import. (import
looks like #include, but works differently.)

• You can define your own packages. Convention is to use your e-mail/Web
address, in reverse order (e.g., Dr. Lewis’s framework is
edu.trinity.cs.gamecore). For your game, I’m recommending
edu.trinity.cs.yourusername.yourgame (yourgame is
something descriptive). Call the main class something with Main in its name.

• Tip: When writing code with Eclipse, if it can’t find a particular class because
it needs an import, select the reference to the class and press
shift-control-M, and it will try to generate an appropriate import.



CSCI 1321 September 4, 2007

Slide 9

“Generics” in Java

• Java library includes classes for collections of things (ArrayList, e.g. —
like an expandable array). Originally, could put any kind of Object in one of
these. Nice, except that then there’s no way to know anything about types of
objects inside except by using reflection (much later, if at all) or
instanceof operator. Must also use explicit casts to do much with
objects retrieved from collection.

• So Java 1.5 (a.k.a 5.0) introduced “generics” — Java’s answer to C++
template classes, though not exactly the same. Idea is to allow you to
specialize a collection — so, a ArrayList of Integer objects only, or a
ArrayList of Account objects only, etc., etc. Syntax uses angle
brackets, e.g., a ArrayList that can hold only Accounts:

Vector<Account> v = new Vector<Account>();

• Also look at API for MainFrame in the game framework . . .

Slide 10

Minute Essay

• What problems did you have doing the design phase of Homework 1?


