
CSCI 1321 September 18, 2007

Slide 1

Administrivia

• Reminder: Homework 1 code due today (11:59pm).

• Reminder: All homework is considered pledged work. Write “pledged” on
hardcopy work, and include it in comments for programming assignments.
(No problem if you’ve already turned in Homework 1 without doing this, but
please remember for future assignments.)

• Quiz 1 Thursday. About 10 minutes long, at the end of class. Open book,
open notes. Should be no real need to study if you have kept up with reading
and material presented in class. Likely kinds of questions are “what does this
code do?” or “write some code to do X”.

• Homework 2 design due Thursday. A little more about the assignment today.

Slide 2

Where Were We? (Recap)

• Topics: Java/OO basics, a little about generics.

• Project: Initial design, first (small) program.



CSCI 1321 September 18, 2007

Slide 3

A Little More About Generics

• “Generics” are a relatively new feature of Java, and can feel a little
complicated to those whose first exposure to the language didn’t include
them. We talk about them now because they’re so useful, and because you
need them for the project.

• Let’s look at a couple of simple examples . . .

Slide 4

Homework 2 — General Comments

• Design phase is meant to be about defining classes and interfaces. For every
class (or interface) and every method, I want comments (can be be brief). For
classes, these should describe (to the best of your understanding) how they
fit into your game (e.g., “class for wall blocks”).

• In order to generate the HTML documentation (“javadoc”), probably have to
have something minimally compilable. As suggested in assignment — create
skeleton/stub versions of methods, and fill in real code in code phase.

• Be sure to get the updated JAR file (should have name
PAD2F07Assn2.jar). With every assignment there will be a new JAR
file, as you replace various parts of the starter code with your code.

• Method instance in BasicGameSetup mentions “singleton”. What’s
that about? Reference to “singleton design pattern” — idea that for some
classes there should only ever be one instance.



CSCI 1321 September 18, 2007

Slide 5

Homework 2 — Design

• Interfaces YourBlock, YourEntity: In project API, referred to as
“general block type” and “general entity type”. You will use these as
replacements for BasicBlock and BasicEntity, and everywhere
else you use one of the framework’s generic classes.

• Player and game setup classes. Copy code from BasicPlayer and
BasicGameSetup and edit (change package line, block and entity
types). May want to change game setup more during code phase. Also edit
your main class from the first assignment.

Don’t worry about player for now — you will start writing your own in the next
assignment.

Slide 6

Homework 2 — Design Continued

• Block class(es). These are blocks that make the playing field for your game.
Should have one class for each kind of block (floor, walls, ladders, anything
that doesn’t move). Try to define as many as you can. Copy code from
BasicBlock.

• Screen class (class implementing Screen interface). This is the most work
in this assignment. Eclipse can make stub methods for you. Copy and paste
comments from API.



CSCI 1321 September 18, 2007

Slide 7

How to Approach Defining a Class

• What methods do I need? If implementing an interface, you at least need the
methods in the interface. May want additional methods. If making a subclass,
remember you automatically inherit all methods from superclass. Can
override them and/or provide additional methods.

• What variables do I need to implement the needed methods? e.g., if defining
a Rectangle class that has a getArea method, probably need either
area or width and height.

Slide 8

A Little About Arrays in Java

• Arrays are objects — unlike in C/C++, where they’re basically pointers.

• Declaring (references to) arrays — denote by putting brackets after type.

• Creating arrays — use new, e.g.,

new int[10]

new String[n]

(Remember that the second one only creates references.)

• All arrays have length variable.

• Otherwise, syntax is same as C/C++; indices start at 0.

• Java runtime does automatic bounds-checking — unlike in C/C++, get
ArrayBoundsException rather than random problems.



CSCI 1321 September 18, 2007

Slide 9

Multidimensional Arrays

• “Arrays of arrays”, e.g.,

int[][] x = new int[10][100];

declares an array of 10 arrays of 100 ints.

• Reference elements with row, column indices, e.g.,

x[row][col] = 10;

• Both dimensions accessible:

x.length = ?

x[0].length = ?

• Note that order of indices (row then column) is the opposite of the “graphics
convention” used in the game.

Slide 10

Minute Essay

• Write code to define an array of four Strings and fill it with data of your
choice.

• Write code to define a two-by-three array of int and set each element to the
sum of its row and column.

• If I declare an array of MyClass references:

MyClass[] objs = new MyClass[10];

do all the elements of objs have to be instances of MyClass, or can they
be instances of some other class?



CSCI 1321 September 18, 2007

Slide 11

Minute Essay Answer

• One solution (array of Strings):

String[] s = new String[4];
s[0] = "hello";
/* other three lines similar */

• One solution (array of ints):

int[][] a = new int[2][3];
for (int row = 0; row < a.length; ++row)

for (int col = 0; col < a[0].length; ++col)
a[row][col] = row + col;

• Elements of an array declared as MyClass[] can be instances of any
“subtype” of MyClass — MyClass itself, or any subclasses. (Trick
question!)


