Administrivia

- Reminder: Homework 6 code due today. (Should we extend that to Thursday?)

Slide 1

Trees - Mathematical Definition

- One definition -
- Set of nodes, one called root.
- Set of edges (directed connections between nodes).
- Root has no incoming edges; all other nodes have exactly one (from

Slide 2

 parent).- Each node can have 0 or more outgoing edges (to children - if none, leaf node).
- Another, recursive definition - tree is one node connected by edges to 0 or more subtrees.
- This is a general tree - e.g., to represent hierarchy such as filesystem.

Implementing Trees

- Define Node data structure, analogous to linked list, with reference to data and references to children (linked list or Vector or ...).
- Easier if number of children is limited to two, and this turns out to be sufficiently useful in practice - "binary tree". Then Node consists of pointers

Slide 3

 to data and left and right subtrees.
Tree Traversals

- For linked lists we defined a way to visit all elements - "iterator". Is there something analogous for trees?
- Well - three orders that are easy to define and implement:
- Preorder - root first.

Slide 4

- Postorder - root last.
- Inorder — leftmost subtree first, then root, then remaining subtrees. (Admittedly a little weird for non-binary trees.)
- (Sketch some code for at least one of these.)

Sorted Binary Trees (Binary Search Trees)

- Key property - everything in the left subtree is smaller than the root, and everything in the right is bigger.
- Why is this useful? If you want a data structure to hold a collection that will be searched frequently, what are the choices? and how fast is each to search?

Slide 5

 to modify (insert/remove)? Compare approximate times for arrays (sorted and unsorted), linked lists (sorted and unsorted), sorted binary tree.- (Sketch some code for add and find. remove is trickier, so we'll just talk about general idea.)

Minute Essay

- None - quiz.

Slide 6

