CSCI 1321 November 15, 2007

Administrivia

o Reminder: Homework 6 code due today.

o Homework 7 due dates week after next.

Slide 1
Priority Queues, Revisited
e Several data structures we could use to implement priority queue ADT:
— Unsorted linked list.
— Sorted linked list.
— Sorted binary tree.
Slide 2 Compare how much work to add/remove if N elements. Can we do better?

Maybe!




CSCI 1321 November 15, 2007

Heaps

e Heap is another tree-based data structure, with two properties:
— A node is always “bigger than” both its children.
— Tree is “complete”.

e For a priority queue, we want to retrieve the “biggest” thing (for game
Slide 3 problem, smallest update time). Does this seem useful?

Note also that we can store a complete binary tree in an array.

e How to insert and remove? Compare running times.

Homework 7

o Writeup should be complete, but a short overview:

— Objective is to write an alternate implementation for priority queue ADT
and compare its performance to that of first implementation.

— To compare performance, need to (1) add something to code to measure
Slide 4 execution time, and (2) increase work being done by priority queue to the
point where performance differences will show up.

® You can find code for a heap-based priority queue lots of places, but you will
probably learn more if you write your own.

e Be sure to save a copy of your existing code before doing this, because you
shouldn’t include most of these changes in what you turn in as a “final” game
(Homework 8).

. J




CSCI 1321 November 15, 2007

e Sketch what a heap of integers (ordered to put smallest values at the top)
would look like after the following operations:

Insert 5, 4, -1, 10, 6, 20.
Remove (smallest).

Slide 5




