
CSCI 1321 December 4, 2007

Slide 1

Administrivia

• Reminders:

Homework 7 code due today. Okay to turn in through Thursday without
penalty.

Homework 8 design due Friday, code same day and time as final. (Or —
combine design/final steps?)

Extensions only under very unusual circumstances.

• Tentative review sheet for final on Web. (But see next slide.)

• Questions about grading? (Grades and comments on homework coming by
e-mail soon.)

• Office hours this week to be announced by e-mail.

Slide 2

More Administrivia

• Original plan is for the final to be similar to the midterm, but twice as long.

• Alternative: Individual project presentations (about 10 minutes each, worth 50
points), then exam slightly longer than midterm and worth 150 points. Which
should we do? (This one. Updated review sheet on Web soon.)



CSCI 1321 December 4, 2007

Slide 3

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User
Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known
ports”, others available for applications.

Slide 4

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message
order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —
analogous to phone call. Endpoints called “sockets”.



CSCI 1321 December 4, 2007

Slide 5

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”
example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).

Slide 6

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to
accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —
generates a socket.

– On each side, get input/output streams for socket.

• Simple example in binary-I/O program from last week.



CSCI 1321 December 4, 2007

Slide 7

Networking in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design
your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program
level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.

Slide 8

Networking in Java — RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java ”remote object
class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;
otherwise can reference class.

• Compile and execute:

– Compile as usual, plus run rmi to generate “stubs” to be used in
communicating with remote objects as remote objects.

– Make classes network-accessible.

– Start rmiregistry.

– Run server and clients as usual.



CSCI 1321 December 4, 2007

Slide 9

More Networking Examples

• Sockets versus RMI: Java master/worker example from parallel programming
class.

• Chat program.

Slide 10

Course Recap — What Did We Do?

• Java basics.

• Object-oriented programming — polymorphism, inheritance, etc. Not stressed
much in class, but game is a good example of a non-trivial o-o design.

• Basic ADTs — stacks, queues, trees (sorted and heaps); different
implementations (arrays versus dynamic data structures using references).

• Recursion review.

• Tour of the Java libraries — GUIs, graphics, I/O; a very little about threads
and networking.

• A fairly large programming project involving using someone else’s code.

• To get a sense of what you learned — compare what you knew in August to
what you know now.



CSCI 1321 December 4, 2007

Slide 11

Minute Essay

• How did the course compare to your expectations/goals? Did you learn what
you hoped to learn?


