
CSCI 1321 September 4, 2008

Slide 1

Administrivia

• Please do not reboot the machines in this room (HAS 340); people rely on

their being available for remote access.

Also be careful not to inadvertently shut them down when trying to log off.

If a previous user has left the machine’s screen locked, you can use use

control-alt-backspace to restart the graphical subsystem.

• Linux accounts for new students should have been created, with passwords

mailed to Trinity e-mail addresses. To change your password, yppasswd

from the command line.

If you’re new to Linux and/or its command line: See “Useful links” page (here).

for links to relevant information.

• Homework 1 design due next Thursday.

Slide 2

A Little More About Homework 1

• Did you start reading the project description? Questions we should talk about

now (briefly)?

• You’re not committing yourself to anything at this point, but try to be as

detailed as you can — so I can try to spot potential trouble. Also good to think

in terms of a basic design (not too ambitious) plus extras. Keep in mind that

what you do has to fit into an existing framework. (That’s actually one of the

pedagogical goals.)

• What you will actually turn in is HTML documentation of your planned game’s

main class — put it in your Local/HTML-Documentation and send

me mail saying “ready to be graded”. (Complete instructions in homework

writeup.)

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2008fall/HTML/links.html


CSCI 1321 September 4, 2008

Slide 3

“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,

functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems

consisting of many (real-world) objects.

Slide 4

What’s An Object?

• Object — set of data (attributes) and associated functions (methods,

behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other

messages.

• Often makes sense to have many similar objects — hence “classes”.



CSCI 1321 September 4, 2008

Slide 5

What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects

are “instances” of the class.

• Defines attributes and methods each object will have (instance

variables/methods), attributes and methods shared by all objects of a class

(class variables/methods).

• Public interface — attributes and methods visible from outside the class.

Slide 6

Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for

efficiency — but it’s much more strongly object-oriented than a hybrid

language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions

like the ones in C.)

• Java variables (except primitives) are references to objects, classes define

types.

• Classes, attributes, methods have varying “visibilities” (from public to private).



CSCI 1321 September 4, 2008

Slide 7

Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only

one class per source code file (exception is inner/nested classes — more

about them later).

• Any class can have a main method that can be launched by the runtime

system (more about that later).

Slide 8

Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by

all objects).

– Methods — similar to C functions, but can be static or non-static (“instance

methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public or private. Good practice to

define as private, except for constants that need to be used outside the class.



CSCI 1321 September 4, 2008

Slide 9

Tools

• Java programs are text, so you can write them with a text editor and compile

and run them from the command line. (In fact I often do.)

• However, many professional programmers use an IDE (Integrated

Development Environment), so we will too. We will use Eclipse, which is a

free open-source tool written in Java, so you should be able to install a copy

on your home machine if you like. (Versions seem to be available for

Windows, Linux, and Mac OS X.)

Slide 10

Example(s)

• Let’s write a “hello world” program.

• We’ll use Eclipse to

– Define a project, a package, and a class with a main method.

– Compile and run.

– Generate HTML documentation.



CSCI 1321 September 4, 2008

Slide 11

Minute Essay

• Was there anything today that was particularly unclear?

• If you have programmed in Java before, what tool(s) did you use?


