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Administrivia

• Please do not reboot the machines in this room (HAS 340); people rely on

their being available for remote access.

Also be careful not to inadvertently shut them down when trying to log off.

If a previous user has left the machine’s screen locked, you can use use

control-alt-backspace to restart the graphical subsystem.

• Linux accounts for new students should have been created, with passwords

mailed to Trinity e-mail addresses. To change your password, yppasswd

from the command line.

If you’re new to Linux and/or its command line: See “Useful links” page (here).

for links to relevant information.

• Homework 1 design due next Thursday.
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A Little More About Homework 1

• Did you start reading the project description? Questions we should talk about

now (briefly)?

• You’re not committing yourself to anything at this point, but try to be as

detailed as you can — so I can try to spot potential trouble. Also good to think

in terms of a basic design (not too ambitious) plus extras. Keep in mind that

what you do has to fit into an existing framework. (That’s actually one of the

pedagogical goals.)

• What you will actually turn in is HTML documentation of your planned game’s

main class — put it in your Local/HTML-Documentation and send

me mail saying “ready to be graded”. (Complete instructions in homework

writeup.)

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2008fall/HTML/links.html
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“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,

functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems

consisting of many (real-world) objects.
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What’s An Object?

• Object — set of data (attributes) and associated functions (methods,

behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other

messages.

• Often makes sense to have many similar objects — hence “classes”.
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What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects

are “instances” of the class.

• Defines attributes and methods each object will have (instance

variables/methods), attributes and methods shared by all objects of a class

(class variables/methods).

• Public interface — attributes and methods visible from outside the class.
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Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for

efficiency — but it’s much more strongly object-oriented than a hybrid

language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions

like the ones in C.)

• Java variables (except primitives) are references to objects, classes define

types.

• Classes, attributes, methods have varying “visibilities” (from public to private).
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Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only

one class per source code file (exception is inner/nested classes — more

about them later).

• Any class can have a main method that can be launched by the runtime

system (more about that later).

Slide 8

Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by

all objects).

– Methods — similar to C functions, but can be static or non-static (“instance

methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public or private. Good practice to

define as private, except for constants that need to be used outside the class.
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Tools

• Java programs are text, so you can write them with a text editor and compile

and run them from the command line. (In fact I often do.)

• However, many professional programmers use an IDE (Integrated

Development Environment), so we will too. We will use Eclipse, which is a

free open-source tool written in Java, so you should be able to install a copy

on your home machine if you like. (Versions seem to be available for

Windows, Linux, and Mac OS X.)
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Example(s)

• Let’s write a “hello world” program.

• We’ll use Eclipse to

– Define a project, a package, and a class with a main method.

– Compile and run.

– Generate HTML documentation.
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Minute Essay

• Was there anything today that was particularly unclear?

• If you have programmed in Java before, what tool(s) did you use?


