
CSCI 1321 September 23, 2008

Slide 1

Administrivia

• Reminder: Homework 2 design due Thursday.

Slide 2

Homework 2 — General Comments

• Design phase is meant to be about defining classes and interfaces. For every

class (or interface) and every method, I want comments (can be be brief). For

classes, these should describe (to the best of your understanding) how they

fit into your game (e.g., “class for wall blocks”).

• In order to generate the HTML documentation (“javadoc”), probably have to

have something minimally compilable. As suggested in assignment — create

skeleton/stub versions of methods, and fill in real code in code phase.

• Be sure to get the updated JAR file (should have name

PAD2F08Assn2.jar). With every assignment there will be a new JAR

file, as you replace various parts of the starter code with your code.

• Note that order of array indices (row then column) is the opposite of the

“graphics convention” used in the game.



CSCI 1321 September 23, 2008

Slide 3

Homework 2 — Design

• Interfaces YourBlock, YourEntity: In project API, referred to as

“general block type” and “general entity type”. You will use these as

replacements for BasicBlock and BasicEntity, and everywhere

else you use one of the framework’s generic classes.

• Player and game setup classes. Copy code from BasicPlayer and

BasicGameSetup and edit (change package line, block and entity

types). May want to change game setup more during code phase. Also edit

your main class from the first assignment.

Don’t worry about player for now — you will start writing your own in the next

assignment.

Slide 4

Homework 2 — Design Continued

• Block class(es). These are blocks that make the playing field for your game.

Should have one class for each kind of block (floor, walls, ladders, anything

that doesn’t move). Try to define as many as you can. Copy code from

BasicBlock.

• Screen class (class implementing Screen interface). This is the most work

in this assignment. Eclipse can make stub methods for you. Copy and paste

comments from API.



CSCI 1321 September 23, 2008

Slide 5

Objects Versus References — A Caution

• What does new MyClass[10] actually create?

• If MyClass contains a method foo, will the following code work properly?

MyClass[] a = new MyClass[10];

a[0].foo();

Slide 6

Sorting and Searching Arrays

• A common thing to do with arrays is sort them. (Remember this from PAD I or

equivalent?)

• Various algorithms for sorting and searching. Some fast, some slow; some

simple, some complex. Decide which to use based on considerations of

simplicity versus speed.

• “Speed”? Yes, but expressed as order of magnitude (“big-oh notation”).



CSCI 1321 September 23, 2008

Slide 7

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 8

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1321 September 23, 2008

Slide 9

Simple (but Slow) Sorts

• Bubble sort. (First pass goes through the whole array, swapping consecutive

elements if out of order, so largest element bubbles to the end. Next pass

goes through all elements but last. And so forth.)

• Selection sort. (First pass finds largest element and puts it at end. Next pass

finds next-to-largest element and puts it at next-to-end. And so forth.)

• Insertion sort. (First pass inserts second element into list of first element.

Next pass inserts third element into list of first two elements. And so forth.)

• All of these are O(N2). And there are others . . .

Slide 10

Other Sorts

• Quicksort (to be discussed later). O(N log N).

• Mergesort (to be discussed later). O(N log N).

• Many others . . .



CSCI 1321 September 23, 2008

Slide 11

Searches

• Sequential search. O(N).

• Binary search. O(log N).

Slide 12

Sorting and Searching — Example Code

• See “Sample programs” page (here)) Code performing an instrumented sort

(count number of comparisons), and other examples.

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2008fall/SamplePrograms/


CSCI 1321 September 23, 2008

Slide 13

Sorting and Searching Arrays in Java

• Writing your own sorting routines is pedagogically useful, but in practice you

would probably use something from Java library. Arrays class has some

useful methods.

• One thing that’s nice about Java is “polymorphic sorting”; can sort objects of

any class that implements Comparable. Can also provide, when you call

Arrays.sort, a Comparator that defines the ordering you want.

Example: case-insensitive sorting of strings.

• (Example code next time.)

Slide 14

Minute Essay

• None — quiz.

• (Quiz solutions posted on the Web shortly after class, and I will usually bring a

hardcopy to class, if you want to take a quick look after turning in your paper.)


