
CSCI 1321 September 25, 2008

Slide 1

Administrivia

• “Open lab” hours 2pm to 4pm Tuesdays and Thursdays in HAS 329.

• Reminder: Homework 2 design due today (11:59pm), code Tuesday.

• Reminder: Quiz 2 Tuesday.

• Career networking event (“Making Connections”) today, starting at 5:45pm in

the Great Hall. Sounds like it might be worthwhile.

Slide 2

Homework 2 — How to Approach Defining a Class

• What methods do I need? If implementing an interface, you at least need the

methods in the interface. May want additional methods. If making a subclass,

remember you automatically inherit all methods from superclass. Can

override them and/or provide additional methods.

• What variables do I need to implement the needed methods? e.g., if defining

a Rectangle class that has a getArea method, probably need either

area or width and height.

• The class where this advice will be most relevant is the one implementing the

Screen interface. You will need to represent your 2D grid of blocks and a

list of entities. What kinds of variables would be good? (Look at the game

framework API for hints about the list.)

CSCI 1321 September 25, 2008

Slide 3

Homework 2 Code — Some Tips

• Eclipse will suggest adding a variable called serialVersionUID to

some of your classes. Do that. (Notice there’s one of these in some of the

provided code.) Value can be anything. We will talk later about what this

means and how to make use of it.

• Notice that x/y coordinates of framework are opposite of row/column.

getSize() in screen class should return width by height.

• To confirm that your code works:

– Start the game, and verify that the playing field is what you defined

(dimensions, plus appearance of blocks — for now, solid colors are okay).

– Try running the screen editor (directions in “project description” document).

If it comes up, and shows all the kinds of blocks you defined, all is well.

(Actually it doesn’t have to do that if you don’t plan to use it — it just has to

not crash.)

Slide 4

Sorting and Searching Arrays in Java

• As mentioned last time, writing your own sorting routines is pedagogically

useful, but in practice you would probably use something from Java library.

Arrays class has some useful methods.

• One thing that’s nice about Java is “polymorphic sorting”; can sort objects of

any class that implements Comparable. Can also provide, when you call

Arrays.sort, a Comparator that defines the ordering you want.

• Examples

CSCI 1321 September 25, 2008

Slide 5

Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”

executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something

(such as I/O) run at the same time. Operating system basically simulates one

CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and

activities of the O/S itself. It also means you could get better performance

with more than one CPU/core — can potentially have more than one thing

actually running at the same time.

• But there are some potential pitfalls, involving interaction among processes.

Slide 6

Processes Versus Threads

• Two basic ways to implement this idea of concurrent execution — “processes”

and “threads”.

• “Processes” don’t (usually) share memory, and must communicate in some

fairly restricted way.

• “Threads” do share memory, which is convenient but has potential pitfalls

(“race conditions”).

CSCI 1321 September 25, 2008

Slide 7

Minute Essay

• Homework 2 – what was difficult? interesting? educational?

