
CSCI 1321 October 7, 2008

Slide 1

Administrivia

• Reminder: Homework 2 code due today.

• Homework 3 due dates on Web (design next Tuesday, code Thursday).

• Reminder: Midterm a week from today. There will be a short review sheet on

the Web soon, and we can spend part of Thursday reviewing.

Slide 2

Homework 3

• In this homework you start writing code for your player, to replace the stick

figure in the starter game.

• Key parts of this assignment are making the player

– interact with different kinds of blocks.

– move in response to keyboard or mouse input from human player.

(If these don’t apply to your game, talk to me about whether there are

reasonable substitutes.)

For design phase, you just need to describe this interaction.

CSCI 1321 October 7, 2008

Slide 3

Homework 3, Continued

• Player defines some constants you should use.

• You will implement KeyListener or one/both of the mouse-listener

interfaces. When you do this, the framework will deliver key and/or mouse

“events” to you.

• Most logic will go in update, getUpdateTime, and the listener

methods.

Slide 4

Multithreading in Java

• Much interest recently in “multithreaded” programming, because of hardware

changes — having more than one CPU/core not just for high-end systems.

• Interestingly enough, Java has included support for multiple threads from the

beginning. Interaction among Java threads based on “monitors” (see

textbooks on operating systems, parallel programming — idea goes back to

1975 papers by Hoare and Brinch Hansen). Java leaves out some aspects of

full-fledged idea, but keeps enough to be useful.

CSCI 1321 October 7, 2008

Slide 5

Threads in Java

• Thread class provides basic functionality. To start a new thread, make a

Thread object and call its start method. Two choices:

– Create a Thread with an object that implements Runnable — run

method has code to execute.

– Define a subclass of Thread that has a run method with code to

execute.

• Interthread interaction based on (implicit) locks:

– Every object (and every class) has a lock.

– synchronized methods must acquire lock — so only one at a time

can run.

– wait gives up the lock and sleeps; notify and notifyAll wake

up one/all sleeping thread(s).

Slide 6

Threads in Java, Continued

• Other useful methods:

– Thread.sleep makes current thread sleep for some interval.

– t.join wait for Thread t to finish.

– t.interrupt interrupts Thread t (which can check whether it has

been interrupted with isInterrupted — safe/approved way for one

thread to stop another.

• Can set thread priorities — sometimes useful, but not a substitute for proper

synchronization.

• Lots of new threads-related stuff in Java 1.5 / 5.0

(java.util.concurrent package).

CSCI 1321 October 7, 2008

Slide 7

Uses for Threads in Java

• Formerly many uses for multithreading in GUIs (e.g., animation), but now

most can be accomplished with new features of GUI classes (e.g., timers).

Still useful, however, if you want something that might take a while to execute

in the background.

• Multithreading also potentially useful for improving performance of

computationally intensive code.

• Examples as time permits

Slide 8

Minute Essay

• None — quiz.

