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Administrivia

• Reminder: Quiz 5 Thursday. Likely topic is GUIs.

• Reminder: Homework 6 design due today, code Thursday.

• How many will be here next Tuesday?
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GUIs and the Project

• Overall layout of game is BorderLayout, with screen in middle and

“game status panels” on four sides — returned by

getGameStatusPanel (in player), usually a JPanel.

• Menu bar is in GameSetup, can be modified.

• Screen editor program has support for “editing properties” (of screens, blocks,

entities) — getEditPropertiesPanel. Could use this to give

slightly different properties to different instances (e.g., walls of different colors,

enemies with different speeds).

• Homework 6 asks you to use these features to (1) display something, and

(2) get input from the user (either in the game or in the screen editor).
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Recursion — Overview

• Basic approach:

– Identify “base case” — something you can solve directly.

– Figure out how to decompose non-base cases into “smaller” problems,

and apply algorithm to smaller problems.

• How to think about “does it work?”

– Does it work for base case(s)?

– Assuming recursive calls work, does it work for other cases?

– Does every recursive call get you at least one step closer to a base case?

• Implementation — conceptually (and usually in fact) involves a stack of

calls-in-progress.

• Can be slower than iteration (though sometimes not), but can also be much

easier to understand.
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Recursion — Simple Examples

• Factorial function.

• Function to compute Fibonacci numbers (very slow!).
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Recursion — More Examples

• Quicksort — pick “pivot” element, split array into elements less than pivot and

elements greater than pivot, and sort recursively. Why does this work?

• Mergesort — split array (or list) into two pieces of equal size, sort recursively,

merge. Why does this work?
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Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from

parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf

node).

• Another, recursive definition — tree is one node connected by edges to 0 or

more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.
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Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data

and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be

sufficiently useful in practice — “binary tree”. Then Node consists of pointers

to data and left and right subtrees.

Slide 8

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there

something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.

(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)
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Minute Essay

• None — sign in.


