
CSCI 1321 November 18, 2008

Slide 1

Administrivia

• Reminder: Quiz 5 Thursday. Likely topic is GUIs.

• Reminder: Homework 6 design due today, code Thursday.

• How many will be here next Tuesday?

Slide 2

GUIs and the Project

• Overall layout of game is BorderLayout, with screen in middle and

“game status panels” on four sides — returned by

getGameStatusPanel (in player), usually a JPanel.

• Menu bar is in GameSetup, can be modified.

• Screen editor program has support for “editing properties” (of screens, blocks,

entities) — getEditPropertiesPanel. Could use this to give

slightly different properties to different instances (e.g., walls of different colors,

enemies with different speeds).

• Homework 6 asks you to use these features to (1) display something, and

(2) get input from the user (either in the game or in the screen editor).



CSCI 1321 November 18, 2008

Slide 3

Recursion — Overview

• Basic approach:

– Identify “base case” — something you can solve directly.

– Figure out how to decompose non-base cases into “smaller” problems,

and apply algorithm to smaller problems.

• How to think about “does it work?”

– Does it work for base case(s)?

– Assuming recursive calls work, does it work for other cases?

– Does every recursive call get you at least one step closer to a base case?

• Implementation — conceptually (and usually in fact) involves a stack of

calls-in-progress.

• Can be slower than iteration (though sometimes not), but can also be much

easier to understand.

Slide 4

Recursion — Simple Examples

• Factorial function.

• Function to compute Fibonacci numbers (very slow!).



CSCI 1321 November 18, 2008

Slide 5

Recursion — More Examples

• Quicksort — pick “pivot” element, split array into elements less than pivot and

elements greater than pivot, and sort recursively. Why does this work?

• Mergesort — split array (or list) into two pieces of equal size, sort recursively,

merge. Why does this work?

Slide 6

Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from

parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf

node).

• Another, recursive definition — tree is one node connected by edges to 0 or

more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.



CSCI 1321 November 18, 2008

Slide 7

Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data

and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be

sufficiently useful in practice — “binary tree”. Then Node consists of pointers

to data and left and right subtrees.

Slide 8

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there

something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.

(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)



CSCI 1321 November 18, 2008

Slide 9

Minute Essay

• None — sign in.


