
CSCI 1321 December 4, 2008

Slide 1

Administrivia

• Homework 7 code due next Tuesday (yes, this is an extension). Notice that for

this assignment you also must turn in two plots.

Slide 2

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known

ports”, others available for applications.



CSCI 1321 December 4, 2008

Slide 3

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.

Slide 4

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”

example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).



CSCI 1321 December 4, 2008

Slide 5

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.

• Simple example in binary-I/O program from last week. More complex

example — chat program.

Slide 6

Client/Server Programming with Sockets — Chat
Example

• In client/server programming, program must define “protocol” for clients and

server to communicate. For chat program, fairly simple:

• Interaction starts with client sending identifying information and server

responding with list of participants.

• Interaction continues with client sending messages to server, which

broadcasts them (to other clients), and accepting broadcast messages from

server.

• Interaction ends when client sends “done” message to server, which

broadcasts this information to other clients.



CSCI 1321 December 4, 2008

Slide 7

Client/Server Programming with Sockets — Chat
Example, Continued

• Code is fairly simple — classes for client and server, plus inner class for

server to keep track of clients. Only tricky bits are related to concurrency . . .

• Server needs to be able to communicate with multiple clients asynchronously

(i.e., no way to know which one will send a message next). One way to deal

with this — start a new thread for each client. Must then be sure these

threads don’t concurrently modify shared data (here, list of clients).

• Client needs to be able to present GUI and also listen for messages

broadcast by server. Less coding here since GUI runs in its own thread

automagically, so we can use the main thread to listen for message from

server. Only complication is that anything in this thread that needs to change

the GUI must use SwingUtilities.invokeLater to be sure

changes happen in event dispatch thread.

Slide 8

• (Code on sample programs page.)



CSCI 1321 December 4, 2008

Slide 9

Minute Essay

• None — quiz.


