
CSCI 1321 January 29, 2008

Slide 1

Administrivia

• Homework 1 design (description of your game) due Thursday at 11:59pm.

Open lab / office hours tomorrow 2:30pm to 5:30pm.

Slide 2

More Administrivia

• Please do not reboot the machines in this room (HAS 340); people rely on
their being available for remote access.

Also be careful not to inadvertently shut them down when trying to log off.

If a previous user has left the machine’s screen locked, use
control-alt-backspace to restart the graphical subsystem.

CSCI 1321 January 29, 2008

Slide 3

A Little More About Homework 1

• Did you start reading the project description? Questions we should talk about
now (briefly)?

• You’re not committing yourself to anything at this point, but try to be as
detailed as you can — so I can try to spot potential trouble. Also good to think
in terms of a basic design (not too ambitious) plus extras. Keep in mind that
what you do has to fit into an existing framework. (That’s actually one of the
pedagogical goals.)

• What you will actually turn in is HTML documentation of your planned game’s
main class — put it in your Local/HTML-Documentation and send
me mail saying “ready to be graded”. (Complete instructions in homework
writeup.)

Slide 4

“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,
functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems
consisting of many (real-world) objects.

CSCI 1321 January 29, 2008

Slide 5

What’s An Object?

• Object — set of data (attributes) and associated functions (methods,
behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other
messages.

• Often makes sense to have many similar objects — hence “classes”.

Slide 6

What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects
are “instances” of the class.

• Defines attributes and methods each object will have (instance
variables/methods), attributes and methods shared by all objects of a class
(class variables/methods).

• Public interface — attributes and methods visible from outside the class.

CSCI 1321 January 29, 2008

Slide 7

Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for
efficiency — but it’s much more strongly object-oriented than a hybrid
language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions
like the ones in C.)

• Java variables (except primitives) are references to objects, classes define
types.

• Classes, attributes, methods have varying “visibilities” (from public to private).

Slide 8

Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only
one class per source code file (exception is inner/nested classes — more
about them later).

• Any class can have a main method that can be launched by the runtime
system (more about that later).

CSCI 1321 January 29, 2008

Slide 9

Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by
all objects).

– Methods — similar to C functions, but can be static or non-static (“instance
methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public or private. Good practice to
define as private, except for constants that need to be used outside the class.

Slide 10

Naming Conventions

• Java library classes and methods follow these conventions:

– If it’s mixed-case and starts with uppercase, it’s a class.

– If it’s mixed-case and starts with lowercase, it’s a variable or method.

– If it’s all uppercase, it’s a constant.

• You should follow them too, so your code will be easier for experienced Java
programmers to read.

CSCI 1321 January 29, 2008

Slide 11

Tools

• Java programs are text, so you can write them with a text editor and compile
and run them from the command line. (In fact I often do.)

• However, many professional programmers use an IDE (Integrated
Development Environment), so we will too. It’s Eclipse, and open-source, so
you should be able to install a copy on your home machine if you like.

Slide 12

Example(s)

• (Example(s) from last time?)

CSCI 1321 January 29, 2008

Slide 13

Compiling and Running Programs — Java Versus C/C++

• With C/C++, your program (“source code”) is transformed by a compiler
into . . .

“object code” (different for different processors), which is combined with
library object code to produce . . .

an “executable” (different for different operating systems) that can be run like
other applications.

• With Java, your program (source code) is transformed by a compiler into . . .

“byte code” (same on any processor), which is executed by . . .

“Java virtual machine” (which has access to library byte code).

Slide 14

Java Basics — Recap

• Java programs consist of classes. Each class can contain

– Variables — instance and static.

– Methods — instance and static.

– Classes (more about this later).

• Variables and methods can be public or private.

• Variables and methods can be final. (Use static final for
constants.)

CSCI 1321 January 29, 2008

Slide 15

Variables

• Primitive types provided for efficiency (not purely object-oriented):

– boolean, short, int, long, float, double are pretty much as
in C.

– char is 16-bit Unicode.

– byte is 8-bit byte.

• All other variables are references to objects, similar to pointers:

– MyClass x creates a reference, not an object — use new to create
objects.

Type of x is MyClass (just as type of an int variable is int).

– Value of null means it doesn’t point to anything.

Slide 16

Java Syntax

• Basic syntax based on C — variable declarations, method definitions,
expressions — with some additions (as discussed in class and in “From C to
Java”).

• (This was by design.)

CSCI 1321 January 29, 2008

Slide 17

Creating and Deleting Objects

• Create object of class MyClass using new operator, e.g.,

MyClass x = new MyClass();

This object contains its own copy of all instance variables defined in
MyClass.

new above invokes no-parameters constructor for MyClass. Can have
additional constructor(s) with parameters as desired.

• No need to explicitly free/delete objects — Java has “garbage collection”.
(This may not seem remarkable unless you’ve used a language without it —
e.g., C or C++.)

Slide 18

Referencing Objects, Variables, and Methods

• Within MyClass, reference members of class (variables and methods)
using just their names. If you have multiple objects of this class, which one is
meant? “current object”.

• In code using MyClass, reference as, e.g., x.foo(parameters) for
instance methods, and MyClass.staticFoo(parameters) for
static methods.

Similar syntax for variables, but likely to be used less, since variables are
normally private. (Exception is constants.)

CSCI 1321 January 29, 2008

Slide 19

Passing Parameters

• Syntax is like C.

• Everything is passed by value — but for reference variables, copying just
creates two pointers to the same object, and the called method can change
the object.

(More about this later.)

Slide 20

Comments

• Can use C-style comments, C++-style comments.

• One type of C-style comments are special — “documentation comments” or
“Javadoc comments”. These start with /** and end with */, and the
command-line tool javadoc turns them into HTML documentation similar
to what Sun provides for the library functions.

• Use documentation comments to describe what people using your class need
to know. Use other types of comments to document code itself — something
that would be useful to humans reading it.

CSCI 1321 January 29, 2008

Slide 21

Java Basics, Continued — Control Structures

• Most control structures are the same as C — if , while, do, switch,
for, etc. Also a simplified for, as of Java 5.0 (a.k.a. 1.5). More about it
later.

• Also have “exceptions” — a way to deal with unusual or error conditions,
break out of current flow of control. Can be “thrown” and “caught” (or not
caught, in which case the program crashes). More about them later.

Slide 22

Arrays, Briefly

• Syntax is like C, except for explicit new:

– int[] x = new int[10]; creates 10 integers.

– String[] args = new String[20]; creates 20 references
to strings.

• Arrays are “first-class” objects, with length variable.

• Java checks for out-of-bounds array references.

CSCI 1321 January 29, 2008

Slide 23

Miscellaneous Other Stuff

• No operator overloading (except “+” for String class).

• On reference variables, = and == operate on references, not objects. (So,
you may instead want copy constructors or equals().)

• No C-style strings, but a String class.

• A little about packages, and Java “generics” (new with 5.0), later.

Slide 24

Example

• Example — Account class.

• (To be continued next time.)

CSCI 1321 January 29, 2008

Slide 25

Minute Essay

• How comfortable do you feel with writing simple programs in Java at this
point? Is there anything that’s particularly unclear?

