
CSCI 1321 January 31, 2008

Slide 1

Administrivia

• Reminder: Homework 1 design due today. Code due next Thursday. Next two

classes should cover enough material for you to do what’s needed.

• A request: You will turn in almost all work for this course by e-mail. Please do

include the name or number of the course in the subject line of your message,

plus something about which assignment it is, to help me get it into the correct

folder for grading.

Slide 2

Minute Essay From Last Lecture

• For the curious — most people seem to be getting what has been done in

class, but not quite confident about being able to reproduce it yet. That’s

about right at this point.

• Someone mentioned transferring files between a laptop and the lab machines

— let’s talk more about that next week, and/or in open lab / office hours.

CSCI 1321 January 31, 2008

Slide 3

Java Basics Example, Continued

• Let’s try to quickly write some more of the methods of that Account

class

• (This example, and most other code from class, will be on the Web, linked

from the “Sample programs” page (here).)

Slide 4

UML Class Diagrams

• “Unified Modeling Language” — formal graphic representation of software

analysis and design.

Many types of diagrams, some of which you’ll probably encounter in other

courses. Tools exist for drawing them, but worth noting that they were

designed to be whiteboard-friendly.

• We will mainly use class diagrams:

– Box representing a class has name, attributes, operations.

– Subclass points to its superclass (represents the path to follow to figure

out inheritance).

http://www.cs.trinity.edu/~bmassing/Classes/CS1321_2008spring/SamplePrograms/

CSCI 1321 January 31, 2008

Slide 5

Inheritance (Short Version)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in

turn have a superclass . . .).

• Subclasses also form “subtypes” — e.g., if CheckingAccount is a

subclass of Account, can use a CheckingAccount anywhere we

need an Account.

Slide 6

Polymorphism (Short Version)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Accounts should work on

CheckingAccounts, SavingsAccounts, . . .

CSCI 1321 January 31, 2008

Slide 7

Inheritance and Code Reuse

• If class Account defines

private double balance;

public double getBalance();

then if SavingsAccount is a subclass of Account,

SavingsAccount also has variable balance and method

getBalance.

• This can be a good way to reduce code duplication.

• If it’s not what you want, subclasses can “override” methods (or variables —

but this is not usually a good idea).

• Or a superclass can leave methods unimplemented; subclasses must then

define (maybe differently for different classes). E.g., for Account, if we

make deposit and withdraw abstract, each subclass must provide its

own code.

Slide 8

Inheritance and Subtypes

• In the bank-account example, class Account defines a type, and

SavingsAccount and CheckingAccount are subtypes. Anywhere

we need a Account, we can use a SavingsAccount — e.g.,

Account s = new SavingsAccount();

(but not SavingsAccount s = new Account();)

• So we could have an array of Accounts, whose elements could be

SavingsAccounts or CheckingAccounts. (More about arrays

soon.)

• Let’s write more code for that example . . .

CSCI 1321 January 31, 2008

Slide 9

Minute Essay

• What changes would you make to the bank-account example to allow paying

interest on accounts? (Would you add variables and/or methods? To what

class(es)?)

Slide 10

Minute Essay Answer

• There should probably be a method addInterest, and I think it should

be in Account, at least as an abstract method. Beyond that — there are

some decisions to make:

• Do all accounts pay interest the same way, or is it different for different types?

if it’s the same for all, code can go in Account, otherwise it needs to go in

subclasses.

• Do all accounts pay interest at the same rate, or is it different for different

types, or even for different individual accounts? if it’s different for different

account, it probably should be an instance variable.

• Is the rate the same every time, or does it change (e.g., varies from month to

month)? If it changes, it probably should be a parameter to addInterest

rather than being an instance variable.

