
CSCI 1321 February 5, 2008

Slide 1

Administrivia

• Reminder: Homework 1 code due Thursday.

• (Review minute essay from last time.)

Slide 2

More Administrivia

• Two options for transferring files between machines:

– Simple, not particularly smart: Just copy .java files between machines.
Several options.

– More complicated to get started, more professional: Use CVS (versioning
software, Eclipse has built-in support).

• (I will add some instructions to project description . . . )



CSCI 1321 February 5, 2008

Slide 3

Multiple Inheritance Versus Interfaces

• What if you want a class to inherit from multiple classes? C++ allows this
(“multiple inheritance”). To avoid possible confusion/ambiguity, Java doesn’t.

• Instead, define “interfaces” — classes in which all methods are abstract.

• In Account example, we could define a HasPersonName interface with
method getPersonName. Not obviously useful — unless there’s another
kind of object that could have a person’s name but shouldn’t be a subclass of
Account. (A prospective customer?)

• A class can “implement” as many interfaces as you like.

Slide 4

Interfaces and Types

• Interfaces also define types. So if Account implements interface
HasPersonName, we can use a Account anywhere a
HasPersonName is required.

HasPersonName o = new Account();

• This is “inclusion polymorphism” — and is what will allow your project code to
plug neatly into Dr. Lewis’s framework. (The framework is written in terms of
interfaces such as Block and Screen; your classes will implement those
interfaces.)



CSCI 1321 February 5, 2008

Slide 5

Packages and Importing

• Library classes grouped into “packages” — e.g., java.util,
java.net.

• For classes in java.lang and “default package”, reference using their
names only. For other classes, can use full name or import. (import
looks like #include, but works differently.)

• Tip: When writing code with Eclipse, if it can’t find a particular class because
it needs an import, select the reference to the class and press
shift-control-M, and it will try to generate an appropriate import.

Slide 6

Packages, Continued

• You can define your own packages. Convention is to use your e-mail/Web
address, in reverse order (e.g., Dr. Lewis’s framework is
edu.trinity.cs.gamecore). For your game, I’m recommending
edu.trinity.cs.yourusername.yourgame (yourgame is
something descriptive). Call the main class something with Main in its name.

• Packages and filesystem hierarchy are related — after creating a package,
look in your Eclipse workspace directory for an example.



CSCI 1321 February 5, 2008

Slide 7

“Generics” in Java

• Java library includes classes for collections of things (ArrayList, e.g. —
like an expandable array). Originally, could put any kind of Object in one of
these. Nice, except that then there’s no way to know anything about types of
objects inside except by using reflection (much later, if at all) or
instanceof operator. Must also use explicit casts to do much with
objects retrieved from collection.

• So Java 1.5 (a.k.a 5.0) introduced “generics” — Java’s answer to C++
template classes, though not exactly the same. Idea is to allow you to
specialize a collection — so, a ArrayList of Integer objects only, or a
ArrayList of Account objects only, etc., etc. Syntax uses angle
brackets, e.g., a ArrayList that can hold only Accounts:

ArrayList<Account> list = new
ArrayList<Account>();

Slide 8

• Also look at API for MainFrame in the game framework . . .



CSCI 1321 February 5, 2008

Slide 9

Minute Essay

• What problems did you have doing the design phase of Homework 1?


