
CSCI 1321 February 7, 2008

Slide 1

Administrivia

• Reading/topics for today updated to include discussion of strings.

• Project description updated to add a little about file transfer and CVS.

• Programs from 1/24 added to “sample programs” page.

• Reminder: Homework 1 code due today. (A little more about it later.)

• Homework 2 due dates posted. Design due next Thursday.

Slide 2

Administrivia

• Reminder: First quiz Tuesday.

• Quizzes will be ten minutes at end of class. Open book, open notes, okay to
browse (on Web) course material and Java library API. Anything covered in
class or in reading is fair game. Only worth 10 points, so not something to
stress about!



CSCI 1321 February 7, 2008

Slide 3

JAR Files

• Recall discussion from 01/29 about differences between Java and C with
regard to compiling, linking, and executing — Java source code compiled to
byte code, no linking step (such as is done for C), instead byte code for all
classes loaded at runtime by the JVM.

• Where does the JVM find needed byte code? via “class path” — which can
include

– Directories/folders, such as the one(s) containing byte code for your
classes — look for .class files.

– “JAR (Java Archive)” files, which can contain byte code for many classes.

Adding a JAR file to the default class path is a little like adding a flag such as
-lm when you compile a C program.

Slide 4

Homework 1 Clarification(s)

• Far from unusual for students to feel a little lost at this point — so try on your
own, then ask!

• Method instance in BasicGameSetup mentions “singleton”. What’s
that about? Reference to “singleton design pattern” — idea that for some
classes there should only ever be one instance.



CSCI 1321 February 7, 2008

Slide 5

Arrays in Java

• Arrays are objects — unlike in C/C++, where they’re basically pointers.

• Declaring (references to) arrays — denote by putting brackets after type.

• Creating arrays — use new, e.g.,

new int[10]

new String[n]

(Remember that the second one only creates references.)

• All arrays have length variable.

• Otherwise, syntax is same as C/C++; indices start at 0.

• Java runtime does automatic bounds-checking — unlike in C/C++, get
ArrayBoundsException rather than random problems.

Slide 6

Multidimensional Arrays

• “Arrays of arrays”, e.g.,

int[][] x = new int[10][100];

declares an array of 10 arrays of 100 ints.

• Reference elements with row, column indices, e.g.,

x[row][col] = 10;

• Both dimensions accessible:

x.length = ?

x[0].length = ?



CSCI 1321 February 7, 2008

Slide 7

Strings in Java

• In C, “strings” are just arrays of characters, terminated by null character.
Simple, but many potential problems (such as trying to read more characters
from input than will fit into allocated space).

• In Java, there’s a library class, String.

• To see what’s available, look at the API . . .

Slide 8

String Class, Continued

• In general, no operator overloading in Java, with one exception — “+” for
strings. Non-string objects converted using (their) toString method.
Primitives converted in the “obvious” way.

• To compare two strings, “==” is rarely what you want. Instead, use equals.

• Strings are “immutable” — once created, can’t be changed. (Why? allows
them to be safely shared.) Methods you would think might change the value
return a new string.

• Use StringBuffer if you need something you can change, or for
efficiency.

• Let’s do some examples . . .



CSCI 1321 February 7, 2008

Slide 9

Sidebar — Immutable Objects

• String is an example of a class that’s “immutable” — once created, objects
can’t be changed. If you look at the API for String, you notice that
methods that “change” the string actually return a new one.

• This sounds inconvenient, right? What advantages might it have? (Hint: What
did we say a few classes ago about what really happens when you “pass an
object to a method”?)

Slide 10

Minute Essay

• None — sign in. Below are the questions I had planned to ask.

• Write code to define an array of four Strings and fill it with data of your
choice.

• Write code to define a two-by-three array of int and set each element to the
sum of its row and column.

• If I declare an array of MyClass references:

MyClass[] objs = new MyClass[10];

do all the elements of objs have to be instances of MyClass, or can they
be instances of some other class?



CSCI 1321 February 7, 2008

Slide 11

Minute Essay Answer

• One solution (array of Strings):

String[] s = new String[4];
s[0] = "hello";
/* other three lines similar */

• One solution (array of ints):

int[][] a = new int[2][3];
for (int row = 0; row < a.length; ++row)

for (int col = 0; col < a[0].length; ++col)
a[row][col] = row + col;

• Elements of an array declared as MyClass[] can be instances of any
“subtype” of MyClass — MyClass itself, or any subclasses. (Trick
question!)


