
CSCI 1321 February 14, 2008

Slide 1

Administrivia

• Reminder: Homework 2 design due today (midnight), code next Tuesday.

• (Review quiz — and notice that there’s a sample solution online.)

Slide 2

Homework 2 Code — Some Tips

• Eclipse will suggest adding a variable called serialVersionUID to
some of your classes. Do that. (Notice there’s one of these in some of the
provided code.) Value can be anything. We will talk later about what this
means and how to make use of it.

• Notice that x/y coordinates of framework are opposite of row/column.
getSize() in screen class should return width by height.

• To confirm that your code works:

– Start the game, and verify that the playing field is what you defined
(dimensions, plus appearance of blocks — for now, solid colors are okay).

– Try running the screen editor (directions in “project description” document).
If it comes up, and shows all the kinds of blocks you defined, all is well.
(Actually it doesn’t have to do that if you don’t plan to use it — it just has to
not crash.)

CSCI 1321 February 14, 2008

Slide 3

Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”
executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something
(such as I/O) run at the same time. Operating system basically simulates one
CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and
activities of the O/S itself. It also means you could get better performance
with more than one CPU/core — can potentially have more than one thing
actually running at the same time.

• But there are some potential pitfalls, involving interaction among processes.

Slide 4

Processes Versus Threads

• Two basic ways to implement this idea of concurrent execution — “processes”
and “threads”.

• “Processes” don’t (usually) share memory, and must communicate in some
fairly restricted way.

• “Threads” do share memory, which is convenient but has potential pitfalls
(“race conditions”).

CSCI 1321 February 14, 2008

Slide 5

Multithreading in Java

• Much interest recently in “multithreaded” programming, because of hardware
changes — having more than one CPU/core not just for high-end systems.

• Interestingly enough, Java has included support for multiple threads from the
beginning. Interaction among Java threads based on “monitors” (see
textbooks on operating systems, parallel programming — idea goes back to
1975 papers by Hoare and Brinch Hansen). Java leaves out some aspects of
full-fledged idea, but keeps enough to be useful.

Slide 6

Threads in Java

• Thread class provides basic functionality. To start a new thread, make a
Thread object and call its start method. Two choices:

– Create a Thread with an object that implements Runnable — run
method has code to execute.

– Define a subclass of Thread that has a run method with code to
execute.

• Interthread interaction based on (implicit) locks:

– Every object (and every class) has a lock.

– synchronized methods must acquire lock — so only one at a time
can run.

– wait gives up the lock and sleeps; notify and notifyAll wake
up one/all sleeping thread(s).

CSCI 1321 February 14, 2008

Slide 7

Threads in Java, Continued

• Other useful methods:

– Thread.sleep makes current thread sleep for some interval.

– t.join wait for Thread t to finish.

– t.interrupt interrupts Thread t (which can check whether it has
been interrupted with isInterrupted — safe/approved way for one
thread to stop another.

• Can set thread priorities — sometimes useful, but not a substitute for proper
synchronization.

• Lots of new threads-related stuff in Java 1.5 / 5.0
(java.util.concurrent package).

Slide 8

Uses for Threads in Java

• Formerly many uses for multithreading in GUIs (e.g., animation), but now
most can be accomplished with new features of GUI classes (e.g., timers).
Still useful, however, if you want something that might take a while to execute
in the background.

• Multithreading also potentially useful for improving performance of
computationally intensive code.

• Examples as time permits

CSCI 1321 February 14, 2008

Slide 9

Minute Essay

• synchronized methods/blocks can solve some problems. Can you think
of ways in which they could lead to other problems?

Slide 10

Minute Essay Answer

• (What I had in mind was the possibility of what’s called deadlock — threads
holding locks in a way that every thread is waiting for some other thread, and
no thread can proceed.)

