
CSCI 1321 March 6, 2008

Slide 1

Administrivia

• Reminder: Midterm exam next Tuesday. Review sheet on Web.

• Reminder: Homework 4 design due next Tuesday.

Slide 2

A Little About the Midterm

• Review class notes, example programs from class, minute essays, and
quizzes (solutions online).

• Most questions will likely be more difficult (or at least longer) than quiz
questions, but similar in format. Might be a few short-answer / multiple-choice
questions too.

• Open book, open notes, some access to Web.

• If you want extra non-game “practice problems” to try, send me mail.

CSCI 1321 March 6, 2008

Slide 3

Homework 4 Overview

• Start writing code for your game entities. Similar to what you did for player last
time.

• Review/revise how you’re creating layout for your game. Several options.

• Write replacement for framework GameEntityList. This will be a linked
list, based on discussion in class. You may find it helpful to draw pictures.

Slide 4

Error Handling — The Problem

• When you have a function in which something goes wrong, how do you tell
the rest of the program?

• Examples:

– Calling a square-root function with a negative number.

– Trying to open (for reading) a file that doesn’t exist.

– Trying to convert a string to an integer, when the string doesn’t contain
something appropriate.

CSCI 1321 March 6, 2008

Slide 5

Error Handling — “Ostrich Approach”

• Idea — hope it doesn’t happen.

• Might sort of work if you tell users in your documentation, and maybe use
assertions.

• But users make mistakes, and what then? e.g., out-of-bounds array access.

• And it may not always be easy to tell what inputs will produce errors (e.g., file
access).

Slide 6

Error Handling — Return Codes

• Idea — have method return an error code if something goes wrong.

• Works well in situations where it might be hard to avoid sometimes causing
the error.

• But requires that users of the method check for the “error” return value —
tedious and error-prone.

• And what about methods that want to return a value? is it always possible to
designate some value as “this means an error”?

CSCI 1321 March 6, 2008

Slide 7

Error Handling — Setting Flags

• Idea — have method set a flag somewhere if something goes wrong.

• Also useful in situations where it might be hard to avoid sometimes causing
the error.

• Again, though, users have to check.

• Requires either an extra parameter (and changing it may be tricky in Java) or
a “global” variable somewhere.

Slide 8

Error Handling — Exceptions

• Idea — when something goes wrong, “throw an exception”. What then?

• Aside — as program runs, we can think of it keeping a stack of nested
method calls (“push” when we call a method, “pop” when one returns).

• When an exception is thrown, runtime system works its way up this stack until
it finds something to “catch” the exception. If it never finds anything, it
terminates the program (actually the thread).

• Mostly this is what Java library classes use to indicate errors — but some use
return codes, so read documentation carefully.

CSCI 1321 March 6, 2008

Slide 9

Dealing With Exceptions

• Catching an exception — “try block”:

try { }
catch (TypeOfException e) { }
catch (OtherTypeOfException e) { }
finally { } // optional

• Letting an exception “bubble up”:

void foo() throws WeirdException { }

• Exception class has some useful methods, e.g.,
printStackTrace.

Slide 10

Checked Versus Unchecked Exceptions

• “Checked exceptions” — ones that sensible programs are supposed to do
something about (e.g., file not found).

Must either catch these, or declare that your method lets them bubble up (and
then callers must do likewise).

• “Unchecked exceptions” — ones for which maybe the reasonable thing to do
is to just let the program crash.

Can catch these, or let them bubble up (with or without declaration), possibly
eventually crashing the program.

CSCI 1321 March 6, 2008

Slide 11

Throwing Exceptions

• Throwing an exception:

throw new TypeOfException(....)

• Usually best to try to find an existing Exception class that fits, but can
declare your own.

• Example — withdraw method in our bank account class. (Revisit this next
time.)

Slide 12

Exceptions Versus Other Approaches

• What’s the attraction?

– Nice mechanism for dealing with errors and unexpected events.

– Unlike return codes, can’t just be ignored.

• But checked exceptions can be annoying to deal with . . .

CSCI 1321 March 6, 2008

Slide 13

Minute Essay

• Here’s a line of code that can throw an exception:

String s;
double x;
/* code to get a value from the user and put in s omitted */
x = Double.parseDouble(s);

Write a few lines of code to catch the kind of exception most likely to be
thrown (look at the documentation for Double.parseDouble() and
print out a meaningful error message.

Slide 14

Minute Essay Answer

• parseDouble can throw a NumberFormatException, so you
could write:

try {
x = Double.parseDouble(s);

}
catch (NumberFormatException e) {

System.out.println(s + " is not a number");
}

