Administrivia

- Reminder: Homework 5 code due today.
- Homework 6 due dates posted (next week).

Slide 1

Recursion - Overview

- Basic approach:
- Identify "base case" - something you can solve directly.
- Figure out how to decompose non-base cases into "smaller" problems, and apply algorithm to smaller problems.

Slide 2

- How to think about "does it work?"
- Does it work for base case(s)?
- Assuming recursive calls work, does it work for other cases?
- Does every recursive call get you at least one step closer to a base case?
- Implementation - conceptually (and usually in fact) involves a stack of calls-in-progress.
- Can be slower than iteration (though sometimes not), but can also be much easier to understand.

Recursion - Simple Examples

- Factorial function.
- Function to compute Fibonacci numbers (very slow!).

Slide 3

Recursion — Parsing an Arithmetic Expression

- "Fully parenthesized arithmetic expression" is one of two things:
- A number n.
- Something of the form

$$
(e \text { op } f)
$$

Slide 4
where e and f are expressions and $o p$ is one of the four arithmetic operators.

- How to evaluate one of these?
- Let's write code for that ...

Recursion — More Examples

- Quicksort — pick "pivot" element, split array into elements less than pivot and elements greater than pivot, and sort recursively. Why does this work?
- Mergesort - split array (or list) into two pieces of equal size, sort recursively, merge. Why does this work?
Slide 5
- Filling the area inside a border.

Minute Essay

- None - quiz.

Slide 6

