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Administrivia

• Reminder: Homework 6 design due Tuesday.
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GUIs and the Project

• Overall layout of game is BorderLayout, with screen in middle and
“game status panels” on four sides — returned by
getGameStatusPanel (in player), usually a JPanel.

• Menu bar is in GameSetup, can be modified.

• Screen editor program has support for “editing properties” (of screens, blocks,
entities) — getEditPropertiesPanel. Could use this to give
slightly different properties to different instances (e.g., walls of different colors,
enemies with different speeds).

• Homework 6 asks you to use these features to (1) display something, and
(2) get input from the user (either in the game or in the screen editor).
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Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from
parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf
node).

• Another, recursive definition — tree is one node connected by edges to 0 or
more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.
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Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data
and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be
sufficiently useful in practice — “binary tree”. Then Node consists of pointers
to data and left and right subtrees.
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Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there
something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.
(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)

Slide 6

Sorted Binary Trees (Binary Search Trees)

• Key property — everything in the left subtree is smaller than the root, and
everything in the right is bigger.

• Why is this useful? If you want a data structure to hold a collection that will be
searched frequently, what are the choices? and how fast is each to search?
to modify (insert/remove)? Compare approximate times for arrays (sorted and
unsorted), linked lists (sorted and unsorted), sorted binary tree. (Next time.)

• (Sketch some code for add and find. remove is trickier — next time.)
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Minute Essay

• Suppose you build a sorted binary tree by adding the following elements.
Sketch the resulting tree.

10, 5, 1, 12, 2

• What would be different if the elements were added in the following order?
(Sketch this one too.)

1, 2, 5, 10, 12
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Minute Essay Answer

• Adding elements in the order given produces a tree that looks like this:
10
/ \

5 12
/
1
\
2

• Adding elements in order gives a tree that’s basically a list — 1 is the root,
and each non-root node has only a right child.


