
CSCI 1321 April 10, 2008

Slide 1

Administrivia

• Reminder: Homework 6 design due Tuesday.

Slide 2

GUIs and the Project

• Overall layout of game is BorderLayout, with screen in middle and
“game status panels” on four sides — returned by
getGameStatusPanel (in player), usually a JPanel.

• Menu bar is in GameSetup, can be modified.

• Screen editor program has support for “editing properties” (of screens, blocks,
entities) — getEditPropertiesPanel. Could use this to give
slightly different properties to different instances (e.g., walls of different colors,
enemies with different speeds).

• Homework 6 asks you to use these features to (1) display something, and
(2) get input from the user (either in the game or in the screen editor).



CSCI 1321 April 10, 2008

Slide 3

Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from
parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf
node).

• Another, recursive definition — tree is one node connected by edges to 0 or
more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.

Slide 4

Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data
and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be
sufficiently useful in practice — “binary tree”. Then Node consists of pointers
to data and left and right subtrees.



CSCI 1321 April 10, 2008

Slide 5

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there
something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.
(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)

Slide 6

Sorted Binary Trees (Binary Search Trees)

• Key property — everything in the left subtree is smaller than the root, and
everything in the right is bigger.

• Why is this useful? If you want a data structure to hold a collection that will be
searched frequently, what are the choices? and how fast is each to search?
to modify (insert/remove)? Compare approximate times for arrays (sorted and
unsorted), linked lists (sorted and unsorted), sorted binary tree. (Next time.)

• (Sketch some code for add and find. remove is trickier — next time.)



CSCI 1321 April 10, 2008

Slide 7

Minute Essay

• Suppose you build a sorted binary tree by adding the following elements.
Sketch the resulting tree.

10, 5, 1, 12, 2

• What would be different if the elements were added in the following order?
(Sketch this one too.)

1, 2, 5, 10, 12

Slide 8

Minute Essay Answer

• Adding elements in the order given produces a tree that looks like this:
10
/ \

5 12
/
1
\
2

• Adding elements in order gives a tree that’s basically a list — 1 is the root,
and each non-root node has only a right child.


