
CSCI 1321 April 24, 2008

Slide 1

Administrivia

• Reminder: Homework 7 design due today, code Tuesday.

• (If you’re behind on turning in homework: The late policy in the syllabus says
normally no credit for homework more than a week late. I will give up to 50%
credit, as long as you get it in by the last day of class.)

Slide 2

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User
Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known
ports”, others available for applications.



CSCI 1321 April 24, 2008

Slide 3

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message
order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —
analogous to phone call. Endpoints called “sockets”.

Slide 4

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”
example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).



CSCI 1321 April 24, 2008

Slide 5

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to
accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —
generates a socket.

– On each side, get input/output streams for socket. Program must define
protocol for the two sides to communicate.

• Simple example in binary-I/O program from last week. More complex
example — chat program.

Slide 6

Client/Server Programming with Sockets — Chat
Example

• In client/server programming, program must define “protocol” for clients and
server to communicate. For chat program, fairly simple:

• Interaction starts with client sending identifying information and server
responding with list of participants.

• Interaction continues with client sending messages to server, which
broadcasts them (to other clients), and accepting broadcast messages from
server.

• Interaction ends when client sends “done” message to server, which
broadcasts this information to other clients.



CSCI 1321 April 24, 2008

Slide 7

Client/Server Programming with Sockets — Chat
Example, Continued

• Code is fairly simple — classes for client and server, plus inner class for
server to keep track of clients. Only tricky bits are related to concurrency . . .

• Server needs to be able to communicate with multiple clients asynchronously
(i.e., no way to know which one will send a message next). One way to deal
with this — start a new thread for each client. Must then be sure these
threads don’t concurrently modify shared data (here, list of clients).

• Client needs to be able to present GUI and also listen for messages
broadcast by server. Less coding here since GUI runs in its own thread
automagically, so we can use the main thread to listen for message from
server. Only complication is that anything in this thread that needs to change
the GUI must use SwingUtilities.invokeLater to be sure
changes happen in event dispatch thread.

Slide 8

Minute Essay

• None — quiz.


