
CSCI 1321 April 29, 2008

Slide 1

Administrivia

• Homework 7 code due Thursday (deadline extended).

• Homework 8 will be due the day of the final (May 10).

Slide 2

Networking in Java — Sockets

• Last time we talked a little about Java programs communicating over
networks using sockets.

• Simple example — “silly class saver” example. More complex example —
chat program. See updated notes for last time.



CSCI 1321 April 29, 2008

Slide 3

Networking in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design
your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program
level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.

Slide 4

Networking in Java — RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java “remote object”
class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;
otherwise can reference class.

• Compile and execute:

– Compile as usual. (Prior to Java 1.5, an extra step was required to
generate “stubs” to be used in communicating with remote objects as
remote objects.

– Make classes network-accessible.

– Start rmiregistry.

– Run server and clients as usual.



CSCI 1321 April 29, 2008

Slide 5

Networking in Java — RMI

• Example — revised chat program. Design is somewhat more elaborate than
absolutely necessary, in an attempt to be modular and flexible:

– Common interface ChatParty for remote objects for both client and
server, with subinterfaces ChatClient and ChatServer, and
classes implementing all of these.

– Interface ChatClientUI for non-remote local UI for clients, with two
implementations.

• Need for multithreading in server goes away — all handled by RMI under the
hood (though we still need to be careful about possible concurrent access to
variables — experiment suggests RMI may use multiple threads). In client UI,
however, we still need separate threads to get input from the user and listen
for messages from the server.

Slide 6

Threads in Java, Revisited

• Earlier in the semester we talked a little bit about multithreading in Java.
Basic functionality — starting up new threads, coordinating actions of different
threads — has been part of Java from the beginning, but more because it’s a
nice model than for performance reasons.

• With multicore machines becoming mainstream, though, using threads to
improve performance is becoming more important. Much, much useful
functionality in java.util.concurrent.



CSCI 1321 April 29, 2008

Slide 7

Example — Numerical Integration

• Compute π by integrating
∫ 1

0
4

1+x2 dx.

• Do this numerically by approximating area under curve by many small
rectangles, computing their area, adding results.

• Sequential program fairly straightforward — loop to compute and sum areas
of rectangles.

• How to divide up work to make use of multiple processors? divide up
iterations of loop among processors, have each compute a partial sum, then
combine results.

• In Java, we can do this by creating and starting multiple threads. Old way is to
explicitly create and start threads. New way uses classes from
java.util.concurrent. Look at example code (to be on Web
later) . . .

Slide 8

Minute Essay

• Tell me about the status of your game — which assignments are done, how
close you are to what you originally envisioned.


