
CSCI 1321 September 8, 2009

Slide 1

Administrivia

• Reminder: Homework 1 design due Thursday.

• “Open lab” hours will be 2pm to 4pm T/R in HAS 329.

Slide 2

Packages and Importing

• Packages are simply a way of grouping related code and providing restricted

scope for class names. Package names are (somewhat) hierarchical, with

levels separated by dots — look at Java library API for examples.

• For classes in java.lang and current package reference using the class

name only (e.g., System). For other classes, can use full name (e.g.,

java.util.Vector), or use import. (import looks like

#include, but works differently.)

• Tip: When writing code with Eclipse, if it can’t find a particular class because

it needs an import, select the reference to the class and press

shift-control-M, and it will try to generate an appropriate import.

Shift-control-M “organizes” imports (removes any not needed).



CSCI 1321 September 8, 2009

Slide 3

Packages, Continued

• You can define your own packages. Convention is to use your e-mail/Web

address, in reverse order (e.g., Dr. Lewis’s framework is

edu.trinity.cs.gamecore). For your game, I’m recommending

edu.trinity.cs.yourusername.yourgame (yourgame is

something descriptive). Call the main class something with Main in its name.

• Packages and filesystem hierarchy are related — for an example, create a

package in Eclipse and then use another tool to look at the resulting

directories and files.

Slide 4

UML Class Diagrams

• “Unified Modeling Language” — formal graphic representation of software

analysis and design.

Many types of diagrams, some of which you’ll probably encounter in other

courses. Tools exist for drawing them, but worth noting that they were

designed to be whiteboard-friendly.

• We will mainly use class diagrams:

– Box representing a class has name, attributes, operations.

– Different kinds of arrows showing relationships among classes and

interfaces.



CSCI 1321 September 8, 2009

Slide 5

Inheritance (Short Version)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in

turn have a superclass . . . ).

• Subclasses also form “subtypes” — e.g., if CheckingAccount is a

subclass of Account, can use a CheckingAccount anywhere we

need an Account.

Slide 6

Polymorphism (Short Version)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Accounts should work on

CheckingAccounts, SavingsAccounts, . . .



CSCI 1321 September 8, 2009

Slide 7

Inheritance and Code Reuse

• If class Account defines

private long balanceInPennies;

public long getBalance();

then if SavingsAccount is a subclass of Account,

SavingsAccount also has variable balance and method

getBalance.

• This can be a good way to reduce code duplication.

• If it’s not what you want, subclasses can “override” methods (or variables —

but this is not usually a good idea).

• Or a superclass can leave methods unimplemented; subclasses must then

define (maybe differently for different classes). E.g., for Account, if we

make deposit and withdraw abstract, each subclass must provide its

own code.

Slide 8

Inheritance and Subtypes

• In the bank-account example, class Account defines a type, and

SavingsAccount and CheckingAccount are subtypes. Anywhere

we need a Account, we can use a SavingsAccount — e.g.,

Account s = new SavingsAccount();

(but not SavingsAccount s = new Account();)

• So we could have an array of Accounts, whose elements could be

SavingsAccounts or CheckingAccounts.

• Let’s write more code for that example . . .



CSCI 1321 September 8, 2009

Slide 9

Inheritance Versus Interfaces

• What if you don’t need/want the superclass to provide any code? you just

want it to define a “contract” that all subclasses must meet (i.e., a list of

methods they must provide?) then you want a Java interface.

• In Account example, we could define a HasPersonName interface with

method getPersonName. Not obviously useful — unless there’s another

kind of object that could have a person’s name but shouldn’t be a subclass of

Account. (A prospective customer?)

• A class can “implement” as many interfaces as you like.

(This helps if you want a class to inherit from multiple classes — Java, unlike

some languages (e.g., C++), doesn’t allow that because of possible

confusion/ambiguity, but you can fake it by implementing multiple interfaces.)

Slide 10

Interfaces and Types

• Interfaces also define types. So if Account implements interface

HasPersonName, we can use a Account anywhere a

HasPersonName is required.

HasPersonName o = new Account();

• This is “inclusion polymorphism” — and is what will allow your project code to

plug neatly into Dr. Lewis’s framework. (The framework is written in terms of

interfaces such as Block and Screen; your classes will implement those

interfaces.)



CSCI 1321 September 8, 2009

Slide 11

Minute Essay

• Last time I asked you to try writing a method to compute interest, with the

monthly interest rate passed as a parameter. But that might not be the best

way to provide for paying interest on accounts, and anyway now we have both

an Account class and subclasses. What would you add to these classes

(variables, methods, etc.) to allow for paying interest? (Your answer might be

“it depends” — if so, on what?)

Slide 12

Minute Essay Answer

• There should probably be a method addInterest, and I think it should

be in Account, at least as an abstract method. Beyond that — there are

some decisions to make:

• Do all accounts pay interest the same way, or is it different for different types?

if it’s the same for all, code can go in Account, otherwise it needs to go in

subclasses.

• Do all accounts pay interest at the same rate, or is it different for different

types, or even for different individual accounts? if it’s different for different

accounts, it probably should be an instance variable.

• Is the rate the same every time, or does it change (e.g., varies from month to

month)? If it changes, it probably should be a parameter to addInterest

rather than being an instance variable.


