
CSCI 1321 September 24, 2009

Slide 1

Administrivia

• Reminder: Homework 2 design due today, code Tuesday. (If you haven’t

turned in Homework 1 code yet — if there’s a problem, please come to office

hours or ask about another time.)

• Reminder: Quiz 2 Tuesday. Likely topics are use of String class and/or

arrays.

• Quiz solutions will be on the Web shortly after the quiz (linked from “lecture

topics and assignments”).

Slide 2

More Administrivia

• Two options for transferring files between machines:

– Simple, not particularly smart: Just copy .java files between machines.

Several options.

– More complicated to get started, more professional: Use CVS (versioning

software, Eclipse has built-in support).

• Some instructions in project description.



CSCI 1321 September 24, 2009

Slide 3

Homework 2 — General Comments

• Design phase is meant to be about defining classes and interfaces. For every

class (or interface) and every method, I want comments (can be be brief). For

classes, these should describe (to the best of your understanding) how they

fit into your game (e.g., “class for wall blocks”).

• In order to generate the HTML documentation (“javadoc”), you probably have

to have something minimally compilable. As suggested in assignment — you

can create skeleton/stub versions of methods, and fill in real code in code

phase. (For classes where you get code, though, might be simpler just to

copy it in right away, if there are comments in the code. Or copy comments

from game framework API.)

• Be sure to get the updated JAR file (should have name

PAD2F09Assn2.jar). With every assignment there will be a new JAR

file, as you replace various parts of the starter code with your code.

Slide 4

Homework 2 Design

• Interfaces YourBlock, YourEntity: In project API, referred to as

“general block type” and “general entity type”. You will use these as

replacements for BasicBlock and BasicEntity, and everywhere

else you use one of the framework’s generic classes.

• Player and game setup classes. Copy code from BasicPlayer and

BasicGameSetup and edit (change package line, block and entity

types). May want to change game setup more during code phase. Also edit

your main class from the first assignment.

Don’t worry about player for now — you will start writing your own in the next

assignment.



CSCI 1321 September 24, 2009

Slide 5

Homework 2 Design Continued

• Block class(es). These are blocks that make the playing field for your game.

Should have one class for each kind of block (floor, walls, ladders, anything

that doesn’t move). Try to define as many as you can. Copy code from

BasicBlock.

• Screen class (class implementing Screen interface). This is the most work

in this assignment. Eclipse can make stub methods for you. Copy and paste

comments from API.

Slide 6

Homework 2 Code — How to Approach Defining a Class

• What methods do I need? If implementing an interface, you at least need the

methods in the interface. May want additional methods. If making a subclass,

remember you automatically inherit all methods from superclass. Can

override them and/or provide additional methods.

• What variables do I need to implement the needed methods? e.g., if defining

a Rectangle class that has a getArea method, probably need either

area or width and height.

• The class where this advice will be most relevant is the one implementing the

Screen interface. You will need to represent your 2D grid of blocks and a

list of entities. What kinds of variables would be good? (Look at the game

framework API for hints about the list.)



CSCI 1321 September 24, 2009

Slide 7

Homework 2 Code — Some Tips

• Eclipse will suggest adding a variable called serialVersionUID to

some of your classes. Do that. (Notice there’s one of these in some of the

provided code.) Value can be anything. We will talk later about what this

means and how to make use of it.

• Notice that x/y coordinates of framework are opposite of row/column.

getSize() in screen class should return width by height.

• To confirm that your code works:

– Start the game, and verify that the playing field is what you defined

(dimensions, plus appearance of blocks — for now, solid colors are okay).

– Try running the screen editor (directions in “project description” document).

If it comes up, and shows all the kinds of blocks you defined, all is well.

(Actually it doesn’t have to do that if you don’t plan to use it — it just has to

not crash.)

Slide 8

Arrays in Java — Review

• Declaring and creating arrays in Java is different from in C — examples:

int[] x = new int[10];

String[] s = new String[n];

• Once created, though, some things are familiar — syntax for finding

elements, range of indices.

(Notice, though, that the second example above creates not String

objects, but references to String objects.)

• Under the hood, more differences — in C, arrays are almost indistinguishable

from pointers, but in Java, they’re objects, with a length field you can use

(but not change), and built-in bounds checking.

• Arrays as parameters to methods — what is passed is a reference to the

array, so the method can change its elements.



CSCI 1321 September 24, 2009

Slide 9

Multidimensional Arrays

• “Arrays of arrays”, e.g.,

int[][] x = new int[10][100];

declares an array of 10 arrays of 100 ints.

• Reference elements with row, column indices, e.g.,

x[row][col] = 10;

• Both dimensions accessible:

x.length = ?

x[0].length = ?

Slide 10

Sorting and Searching Arrays

• A common thing to do with arrays is sort them. (In theory this is covered in

PAD I, but in practice, not always, so we will spend time on it.)

• Various algorithms for sorting and searching. Some fast, some slow; some

simple, some complex. Decide which to use based on considerations of

simplicity versus speed.

• “Speed”? Yes, but expressed as order of magnitude (“big-oh notation”).



CSCI 1321 September 24, 2009

Slide 11

Simple (but Slow) Sorts

• Bubble sort. (First pass goes through the whole array, swapping consecutive

elements if out of order, so largest element bubbles to the end. Next pass

goes through all elements but last. And so forth.)

• Selection sort. (First pass finds largest element and puts it at end. Next pass

finds next-to-largest element and puts it at next-to-end. And so forth.)

• Insertion sort. (First pass inserts second element into list of first element.

Next pass inserts third element into list of first two elements. And so forth.)

And there are others . . .

Slide 12

Other Sorts

• Other comparison-based sorts (to be discussed later) include quicksort and

mergesort.

• Other methods include bucket sort and radix sort.



CSCI 1321 September 24, 2009

Slide 13

Searches

• Sequential search — start with the first element, examine elements one after

another until a match is found or there are no more to examine.

• Binary search (for sorted data only) — examine the middle element and either

stop if a match is found or recursively search the left or right half of the array.

Slide 14

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).



CSCI 1321 September 24, 2009

Slide 15

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)

Slide 16

Order of Magnitude of Sorts and Searches

• Usually we count comparison (and sometimes also swaps).

• For bubble sort, how many comparisons? For N elements, first pass through

the array makes N − 1 comparisons, next pass makes N − 2, etc. Total is

(N − 1)(N − 2)/2 — which in order-of-magnitude terms is O(N2).

• Selection sort and insertion sort are also O(N2).

• Quicksort and mergesort are O(N log N). (More about this later.)

• Sequential search is — ? (O(N)) Binary search? (O(log N))



CSCI 1321 September 24, 2009

Slide 17

Minute Essay

• What did you find most difficult about Homework 1? most interesting or

educational?


