
CSCI 1321 October 29, 2009

Slide 1

Administrivia

• Reminder: Homework 5 design due today, code Tuesday.

Slide 2

Why Parallel Computing

• It’s been an article of faith for a long time that eventually we’d hit physical

limits on speed of single CPUs, despite interpretation of Moore’s law as “CPU

speed doubles every 1.5 years.”

• But — strictly speaking, Moore’s law says that the number of transistors that

can be placed on a die doubles every 1.5 years.

• Historically that has meant — more or less — doubling speed and memory

size. That seems to be at an end (for now?) — tricks hardware designers use

to get more speed require higher power density, generate more heat, etc.

• So, what to do with all those transistors? Provide hardware support for doing

more than one thing at a time (“parallelism” or “concurrency”).

CSCI 1321 October 29, 2009

Slide 3

One Approach — Multicore Chips

• Key idea here — chip includes several “cores”, all sharing one connection to

memory.

• Each “core” is a processor in the sense we talk about in introductory and

courses and Computer Design; each typically has its own first-level cache.

• To fully exploit this for a single application, need multiple threads (or

processes).

Slide 4

Another Approach — Hyper Threading

• Key idea here — chip includes hardware support for having more than one

thread at a time “active”, but strictly speaking only a single processing core.

Replicated components include program counter, ALU.

• What this allows is very fine-grained concurrency (“more than one logical

CPU”), which can hide latency. (Note, though, that performance

improvements range from zero to about 30 percent.)

• To fully exploit this for a single application, need multiple threads (or

processes).

CSCI 1321 October 29, 2009

Slide 5

Another Approach — Clusters

• In addition to hardware support for shared-memory parallelism —

Ubiquity of networking makes almost any PC part of a “cluster”.

Slide 6

Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”

executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something

(such as I/O) run at the same time. Operating system basically simulates one

CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and

activities of the O/S itself. It also means you could get better performance

with more than one CPU/core — can potentially have more than one thing

actually running at the same time.

• But there are some potential pitfalls, involving interaction among processes.

CSCI 1321 October 29, 2009

Slide 7

Processes Versus Threads

• Two basic ways to implement this idea of concurrent execution — “processes”

and “threads”.

• “Processes” don’t (usually) share memory, and must communicate in some

fairly restricted way.

• “Threads” do share memory, which is convenient but has potential pitfalls

(“race conditions”).

Slide 8

Multithreading in Java

• Interestingly enough, Java has included support for multiple threads from the

beginning — probably because it’s a good mental model for GUIs.

• Interaction among Java threads based on “monitors” (see textbooks on

operating systems, parallel programming — idea goes back to 1975 papers

by Hoare and Brinch Hansen). Java leaves out some aspects of full-fledged

idea, but keeps enough to be useful.

CSCI 1321 October 29, 2009

Slide 9

Threads in Java

• Thread class provides basic functionality. To start a new thread, make a

Thread object and call its start method. Two choices:

– Create a Thread with an object that implements Runnable — run

method has code to execute.

– Define a subclass of Thread that has a run method with code to

execute.

• Interthread interaction based on (implicit) locks:

– Every object (and every class) has a lock.

– synchronized methods must acquire lock — so only one at a time

can run.

– wait gives up the lock and sleeps; notify and notifyAll wake

up one/all sleeping thread(s).

Slide 10

Threads in Java, Continued

• Other useful methods:

– Thread.sleep makes current thread sleep for some interval.

– t.join wait for Thread t to finish.

– t.interrupt interrupts Thread t (which can check whether it has

been interrupted with isInterrupted — safe/approved way for one

thread to stop another.

• Can set thread priorities — sometimes useful, but not a substitute for proper

synchronization.

• Lots of useful classes in java.util.concurrent and related

packages, new with Java 1.5/5.0.

CSCI 1321 October 29, 2009

Slide 11

Uses for Threads in Java

• Formerly many uses for multithreading in GUIs (e.g., animation), but now

most can be accomplished with new features of GUI classes (e.g., timers).

Still useful, however, if you want something that might take a while to execute

in the background.

• Multithreading also potentially useful for improving performance of

computationally intensive code.

• Examples later

Slide 12

Java GUI Classes and Multithreading

• Currently Java GUI classes are implemented in terms of an “event dispatch

thread” (EDT) — something that listens (to some part of the operating

system/environment?) for “events” (from keyboard or mouse, e.g.) and

“dispatches” them by calling appropriate methods associated with GUI

components.

• Not all of what’s under the hood is thread-safe, so Sun recommends that all

changes to GUI components be done in the EDT. This happens automatically

with listener methods. Accesses from the “main” thread and from other

threads should use SwingUtilities.invokeLater. (See example

from last time again.)

CSCI 1321 October 29, 2009

Slide 13

Multithreading and the Game Framework

• Listener methods run in the EDT. Other methods run in a different thread.

• Problem? Maybe. Concurrent access to simple primitive types (boolean,

int) is pretty safe — the worst that’s likely to happen is that changes made

by one thread aren’t immediately visible to others. But anything involving

more complicated data structures is probably a bad idea without explicit

synchronization.

Slide 14

Minute Essay

• My simple example of a race condition involves two threads trying to access a

variable they share, one adding to its value and one subtracting from it, which

can give different answers depending on exactly how actions of the two

threads are interleaved.

• An example of a more complicated data structure we might want to share

among threads is a queue (e.g., a queue of things to be printed). Could there

be similar problems with multiple threads accessing a queue? Explain based

on any of the implementations we’ve talked about in class.

CSCI 1321 October 29, 2009

Slide 15

Minute Essay Answer

• Yes, there could be similar problems. In both of the implementations we’ve

talked about (using arrays and using linked lists), adding something to the

queue involves updating something representing the end of the queue. As

with the add/subtract example, unless getting the old value, modifying it, and

storing the new value can be done as one indivisible operation, there could be

problems if multiple threads are trying to perform this get/modify/store

operation at the same time.

