
CSCI 1321 November 19, 2009

Slide 1

Administrivia

• Reminder: Homework 6 code due today. Due dates for Homework 7 on Web

(after holiday).

• Reminder: Quiz 5 Tuesday. Likely topic is GUIs.

Slide 2

Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from

parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf

node).

• Another, recursive definition — tree is one node connected by edges to 0 or

more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.



CSCI 1321 November 19, 2009

Slide 3

Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data

and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be

sufficiently useful in practice — “binary tree”. Then Node consists of pointers

to data and left and right subtrees.

Slide 4

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there

something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.

(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)



CSCI 1321 November 19, 2009

Slide 5

Sorted Binary Trees (Binary Search Trees)

• Key property — everything in the left subtree is smaller than the root, and

everything in the right is bigger.

• Why is this useful? If you want a data structure to hold a collection that will be

searched frequently, what are the choices? and how fast is each to search?

to modify (insert/remove)? Compare approximate times for arrays (sorted and

unsorted), linked lists (sorted and unsorted), sorted binary tree.

• (Sketch some code for add and find. remove is trickier . . . )

Slide 6

Priority Queues, Revisited

• Several data structures we could use to implement priority queue ADT:

– Unsorted linked list.

– Sorted linked list.

– Sorted binary tree.

Compare how much work to add/remove if N elements. Can we do better?

Maybe!



CSCI 1321 November 19, 2009

Slide 7

Heaps

• Heap is another tree-based data structure, with two properties:

– A node is always “bigger than” both its children.

– Tree is “complete”.

• For a priority queue, we want to retrieve the “biggest” thing (for game

problem, smallest update time). Does this seem useful?

• Note also that we can store a complete binary tree in an array.

• How to insert and remove? Compare running times.

Slide 8

Minute Essay

• Sketch what a sorted binary tree of integers would look like after adding the

following:

5, 4, -1, 10, 6, 20.

• Now sketch what a heap of integers (ordered to put smallest values at the

top) would look like after adding the same values.



CSCI 1321 November 19, 2009

Slide 9

Minute Essay Answer

• The BST:

5

/ \

4 10

/ / \

-1 6 20

• The heap:

-1

/ \

5 4

/ \ /

10 6 20


