
CSCI 1321 November 24, 2009

Slide 1

Administrivia

• Reminder: Homework 7 design due Tuesday after break.

Slide 2

Tree-Based Data Structures — Review

• Last time we talked about trees in general, binary trees, and two special

cases — binary search trees and heaps.

• (A comment about the readings: The chapters of the online textbook that are

supposed to discuss some of this material are incomplete. I’ve posted links to

Wikipedia articles that may help supplement the discussion from last time.)



CSCI 1321 November 24, 2009

Slide 3

Binary Search Trees — Review

• These are binary trees (at most two children per node) that store data of

some sortable type, with the property that for each node, all the elements

stored in its left subtree are smaller than the node’s data, and all the elements

in its right subtree are larger. (Usually simplest not to store duplicates.)

• So, they’re a reasonable choice for storing a sorted list.

• Methods for adding, removing, and searching for elements sketched last time.

Code today as time permits.

Slide 4

Binary Search Trees Versus Sorted Linked Lists

• For a sorted linked list with N elements, adding or removing an element is

O(N).

• For a BST with N elements, adding or removing an element is O(D), where

D is the depth of the tree. Best case is that D is about log
2
N . (Why?)

Worst case is that it’s N . (Various optimizations to the basic add/remove

methods discussed last time can be done to avoid the worst-case situation.)

• One more consideration might be storage requirements. Which takes more?



CSCI 1321 November 24, 2009

Slide 5

Heaps — Review

• These are binary trees that also store data of some sortable type, with two

properties:

– They’re complete — i.e., they look as if each level of the tree had been

filled left to right.

– For each node, the stored data is less than or equal to the data stored at

all children. (“Less than” here should be interpreted broadly, so you could

also have a tree with the maximum element at the root instead of the

minimum.)

• So, they’re a good choice for storing a priority queue.

Slide 6

Heaps Versus List-Based Priority Queues

• For a priority queue N elements implemented as a linked list, adding an

element is O(N), while removing the minimum element is O(1).

• For a heap with N elements, adding or removing an element is O(D), where

D is the depth of the tree — which for a heap is known to be about log
2
N .

(Why?)

• Heaps also have the nice property that they can be stored as arrays, rather

than using an explicit tree data structure.



CSCI 1321 November 24, 2009

Slide 7

Heaps — Adding an Element (Review)

• Add the element in the position needed to maintain the completeness

property (easily found if stored in an array, yes?). Of course, this may break

the ordering property, so . . .

• Starting at the newly-added element, move up the tree, exchanging a node

and its parent, until either the node being examined is not smaller than its

parent or you reach the root. (Think about why we can be sure this is all we

need to do.)

Slide 8

Heaps — Removing Smallest Element (Review)

• Remove the element at the root (this is the smallest, no?). This breaks the

completeness property, so . . .

• Move the “last” element (rightmost element of lowest level) to the root. This

may break the ordering property, so . . .

• Starting at the root, move down the tree. At each level, compare the node to

all its children. If at least one is smaller, exchange the node with its smallest

child, and recurse into the corresponding subtree. Continue until either the

node being examined is smaller than (or equal to) all its children or it has no

children. (Think about why we can be sure this is all we need to do.)



CSCI 1321 November 24, 2009

Slide 9

Homework 7 — Overview

• Objective is to write an alternate implementation for priority queue ADT and

compare its performance to that of first implementation.

• To compare performance, need to:

– Increase work being done by priority queue to the point where

performance differences will show up — “dummy entities”.

– Add something to code to measure performance — time every 100 calls to

player’s update method.

– Provide a way to test with both implementations of the priority queue ADT

and varying workloads — command-line arguments. (More in a later slide.)

Slide 10

Homework 7 — Tips

• You can find code for a heap-based priority queue lots of places, but you will

probably learn more if you write your own.

• Be sure to save a copy of your existing code before doing this, because you

shouldn’t include most of these changes in what you turn in as a “final” game

(Homework 8).



CSCI 1321 November 24, 2009

Slide 11

Command-Line Arguments

• Many mechanisms for starting programs provide a way of passing them

information without using files or standard input — “command-line

arguments”. Example — when you type at the command line

ls -l myfile

-l and myfile are passed to the ls in this way.

• C programs can receive command-line arguments by declaring main as

int main(int argc, char *argv[])

or equivalent, where argc is the number of arguments and argv is an

array of C-style strings. By convention the zero-th argument is something

identifying the program (e.g., its name). So in the ls example above, there

would be three arguments . . .

Slide 12

Command-Line Arguments, Continued

• Java main methods also receive command-line arguments via arguments

passed to main. main must always be declared with an argument of type

String[], which is a Java array containing the arguments. A Java

equivalent of ls would get only two arguments for the example of the

previous slide.

• Eclipse unfortunately doesn’t make it that easy to invoke programs with

command-line arguments that vary from execution to execution, but it’s

possible. An alternative is to run the program from the command line:

java MainClass arg1 arg2

or for your game something like

java -classpath bin:PAD2.jar MainClass arg1

arg2

(Replace “:” with “;” on Windows.)



CSCI 1321 November 24, 2009

Slide 13

Minute Essay

• None — quiz.


