
CSCI 1321 December 3, 2009

Slide 1

Administrivia

• Reminder: Homework 7 code and plots due today. If you’re turning in

hardcopy of plots, okay to do that tomorrow.

• Homework 8 (final revisions and enhancements) due day of final.

Slide 2

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known

ports”, others available for applications.



CSCI 1321 December 3, 2009

Slide 3

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.

Slide 4

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”

example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).



CSCI 1321 December 3, 2009

Slide 5

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.

• Simple example in binary-I/O program from last. More complex example —

chat program.

Slide 6

Client/Server Programming with Sockets — Chat
Example

• In client/server programming, program must define “protocol” for clients and

server to communicate. For chat program, fairly simple:

• Interaction starts with client sending identifying information and server

responding with list of participants.

• Interaction continues with client sending messages to server, which

broadcasts them (to other clients), and accepting broadcast messages from

server.

• Interaction ends when client sends “done” message to server, which

broadcasts this information to other clients.



CSCI 1321 December 3, 2009

Slide 7

Client/Server Programming with Sockets — Chat
Example, Continued

• Code is fairly simple — classes for client and server, plus inner class for

server to keep track of clients. Only tricky bits are related to concurrency . . .

• Server needs to be able to communicate with multiple clients asynchronously

(i.e., no way to know which one will send a message next). One way to deal

with this — start a new thread for each client. Must then be sure these

threads don’t concurrently modify shared data (here, list of clients).

• Client needs to be able to present GUI and also listen for messages

broadcast by server. Less coding here since GUI runs in its own thread

automagically, so we can use the main thread to listen for message from

server. Only complication is that anything in this thread that needs to change

the GUI must use SwingUtilities.invokeLater to be sure

changes happen in event dispatch thread.

Slide 8

Networking in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.



CSCI 1321 December 3, 2009

Slide 9

Networking in Java — RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java “remote object”

class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• Compile and execute:

– Compile as usual. (Prior to Java 1.5, an extra step was required to

generate “stubs” to be used in communicating with remote objects as

remote objects. No longer necessary!)

– Make classes network-accessible.

– Start rmiregistry.

– Run server and clients as usual.

Slide 10

Networking in Java — RMI

• Example — revised chat program. Design is somewhat more elaborate than

absolutely necessary, in an attempt to be modular and flexible:

– Common interface ChatParty for remote objects for both client and

server, with subinterfaces ChatClient and ChatServer, and

classes implementing all of these.

– Interface ChatClientUI for non-remote local UI for clients, with two

implementations.

• Need for multithreading in server goes away — all handled by RMI under the

hood (though we still need to be careful about possible concurrent access to

variables — experiment suggests RMI may use multiple threads). In client UI,

however, we still need separate threads to get input from the user and listen

for messages from the server.



CSCI 1321 December 3, 2009

Slide 11

Minute Essay

• None — quiz.


