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Administrivia

• Reminder (or notice, for those not subscribed to the CSMajors mailing list):
“Research Opportunities Fair” today at 5pm in the Great Hall.

• (If you aren’t subscribed to CSMajors, it might be a good idea — we circulate
announcements of CS-related events, job opportunities, etc. Not just for
majors. Instructions for subscribing on department home page.)
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More Administrivia

• Please do not reboot the machines in this room (HAS 340); people rely on
their being available for background work and remote access.

Also be careful not to inadvertently shut them down when trying to log off.

If a previous user has left the machine’s screen locked, you can use
control-alt-backspace to restart the graphical subsystem.

If you think a reboot is needed, find a faculty member to decide and take
responsibility.
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“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,
functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems
consisting of many (real-world) objects.

Slide 4

What’s An Object?

• Object — set of data (attributes) and associated functions (methods,
behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other
messages.

• Often makes sense to have many similar objects — hence “classes”.
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What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects
are “instances” of the class.

• Defines attributes and methods each object will have (instance
variables/methods), attributes and methods shared by all objects of a class
(class variables/methods).

• Public interface — attributes and methods visible from outside the class.
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Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for
efficiency — but it’s much more strongly object-oriented than a hybrid
language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions
like the ones in C.)

• Java variables (except primitives) are references to objects, classes define
types.

• Classes, attributes, methods have varying “visibilities” (from public to private).
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Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only
one class per source code file (exception is inner/nested classes — more
about them later).

• Any class can have a main method that can be launched by the runtime
system (more about that later).
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Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by
all objects).

– Methods — similar to C functions, but can be static or non-static (“instance
methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public or private. Good practice to
define as private, except for constants that need to be used outside the class.
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Tools

• Java programs are text, so you can write them with a text editor and compile
and run them from the command line. (In fact I often do.)

• However, many professional programmers use an IDE (Integrated
Development Environment), so we will too. We will use Eclipse, which is a
free open-source tool written in Java, so you should be able to install a copy
on your home machine if you like. (Versions seem to be available for
Windows, Linux, and Mac OS X.)
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Naming Conventions

• Java library classes and methods follow these conventions:

– If it’s mixed-case and starts with uppercase, it’s a class.

– If it’s mixed-case and starts with lowercase, it’s a variable or method.

– If it’s all uppercase, it’s a constant.

• You should follow them too, so your code will be easier for experienced Java
programmers to read.
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Compiling and Running Programs — Java Versus C/C++

• With C/C++, your program (“source code”) is transformed by a compiler
into . . .

“object code” (different for different processors), which is combined with
library object code to produce . . .

an “executable” (different for different operating systems) that can be run like
other applications.

• With Java, your program (source code) is transformed by a compiler into . . .

“byte code” (same on any processor), which is executed by . . .

“Java virtual machine” (which has access to library byte code).
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Example(s)

• Let’s write a “hello world” program.

• We’ll use Eclipse to

– Define a project, a package, and a class with a main method.

– Compile and run.

– Generate HTML documentation.

• (Now you should know enough to start trying examples as you do the reading
— and you probably should.)
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Minute Essay

• Was there anything today that was particularly unclear?

• If you have programmed in Java before, what tool(s) did you use?


