
CSCI 1321 February 5, 2009

Slide 1

Administrivia

• Reminder: Homework 1 design due today (by midnight). Code due Tuesday.
Updated information about office hours coming by e-mail.

• Quiz solutions will be on the Web shortly after class.

Slide 2

More Administrivia

• Two options for transferring files between machines:

– Simple, not particularly smart: Just copy .java files between machines.
Several options.

– More complicated to get started, more professional: Use CVS (versioning
software, Eclipse has built-in support).

• Some instructions in project description.

CSCI 1321 February 5, 2009

Slide 3

Compiling and Running Java Programs, Revisited

• Recall discussion from a previous class about differences between Java and
C with regard to compiling, linking, and executing — Java source code
compiled to byte code, no linking step (such as is done for C), instead byte
code for all classes loaded at runtime by the JVM.

• Where does the JVM find needed byte code? via “class path” — which can
include

– Directories/folders, such as the one(s) containing byte code for your
classes — look for .class files.

– “JAR (Java Archive)” files, which can contain byte code for many classes.

Adding a JAR file to the default class path is a little like adding a flag such as
-lm when you compile a C program.

Slide 4

Homework 1 Clarification(s)

• Far from unusual for students to feel a little lost at this point — so try on your
own, then ask!

• Method instance in BasicGameSetup mentions “singleton”. What’s
that about? Reference to “singleton design pattern” — idea that for some
classes there should only ever be one instance.

CSCI 1321 February 5, 2009

Slide 5

Error Handling — The Problem

• When you have a function in which something goes wrong, how do you tell
the rest of the program?

• Examples:

– Calling a square-root function with a negative number.

– Trying to open (for reading) a file that doesn’t exist.

– Trying to convert a string to an integer, when the string doesn’t contain
something appropriate.

Slide 6

Error Handling — “Ostrich Approach”

• Idea — hope it doesn’t happen.

• Might sort of work if you tell users in your documentation, and maybe use
assertions.

• But users make mistakes, and what then? e.g., out-of-bounds array access.

• And it may not always be easy to tell what inputs will produce errors (e.g., file
access).

CSCI 1321 February 5, 2009

Slide 7

Error Handling — Return Codes

• Idea — have method return an error code if something goes wrong.

• Works well in situations where it might be hard to avoid sometimes causing
the error.

• But requires that users of the method check for the “error” return value —
tedious and error-prone.

• And what about methods that want to return a value? is it always possible to
designate some value as “this means an error”?

Slide 8

Error Handling — Setting Flags

• Idea — have method set a flag somewhere if something goes wrong.

• Also useful in situations where it might be hard to avoid sometimes causing
the error.

• Again, though, users have to check.

• Requires either an extra parameter (and changing it may be tricky in Java) or
a “global” variable somewhere.

CSCI 1321 February 5, 2009

Slide 9

Error Handling — Exceptions

• Idea — when something goes wrong, “throw an exception”. What then?

• Aside — as program runs, we can think of it keeping a stack of nested
method calls (“push” when we call a method, “pop” when one returns).

• When an exception is thrown, runtime system works its way up this stack until
it finds something to “catch” the exception. If it never finds anything, it
terminates the program (actually the thread).

• Mostly this is what Java library classes use to indicate errors — but some use
return codes, so read documentation carefully.

Slide 10

Dealing With Exceptions

• Catching an exception — “try block”:

try { }
catch (TypeOfException e) { }
catch (OtherTypeOfException e) { }
finally { } // optional

• Letting an exception “bubble up”:

void foo() throws WeirdException { }

• Exception class has some useful methods, e.g.,
printStackTrace.

CSCI 1321 February 5, 2009

Slide 11

Checked Versus Unchecked Exceptions

• “Checked exceptions” — ones that sensible programs are supposed to do
something about (e.g., file not found).

Must either catch these, or declare that your method lets them bubble up (and
then callers must do likewise).

• “Unchecked exceptions” — ones for which maybe the reasonable thing to do
is to just let the program crash.

Can catch these, or let them bubble up (with or without declaration), possibly
eventually crashing the program.

Slide 12

Throwing Exceptions

• Throwing an exception:

throw new TypeOfException(....)

• Usually best to try to find an existing Exception class that fits, but can
declare your own.

• Example — withdraw method in our bank account class.

CSCI 1321 February 5, 2009

Slide 13

Exceptions Versus Other Approaches

• What’s the attraction?

– Nice mechanism for dealing with errors and unexpected events.

– Unlike return codes, can’t just be ignored.

• But checked exceptions can be annoying to deal with . . .

Slide 14

Minute Essay

• None — quiz.

