
CSCI 1321 February 26, 2009

Slide 1

Administrivia

• Reminder: Midterm next Tuesday. Review sheet on Web. Updated “practice
problems” on Web.

• Reminder: If you’re struggling with the homeworks, or with the course overall
— it’s okay to ask for help.

Slide 2

Why Parallel Computing

• It’s been an article of faith for a long time that eventually we’d hit physical
limits on speed of single CPUs, despite interpretation of Moore’s law as “CPU
speed doubles every 1.5 years.”

• But — strictly speaking, Moore’s law says that the number of transistors that
can be placed on a die doubles every 1.5 years.

• Historically that has meant — more or less — doubling speed and memory
size. That seems to be at an end (for now?) — tricks hardware designers use
to get more speed require higher power density, generate more heat, etc.

• So, what to do with all those transistors? Provide hardware support for doing
more than one thing at a time (“parallelism” or “concurrency”).

CSCI 1321 February 26, 2009

Slide 3

One Approach — Multicore Chips

• Key idea here — chip includes several “cores”, all sharing one connection to
memory.

• Each “core” is a processor in the sense we talk about in introductory and
courses and Computer Design; each typically has its own first-level cache.

• To fully exploit this for a single application, need multiple threads (or
processes).

Slide 4

Another Approach — Hyper Threading

• Key idea here — chip includes hardware support for having more than one
thread at a time “active”, but strictly speaking only a single processing core.
Replicated components include program counter, ALU.

• What this allows is very fine-grained concurrency (“more than one logical
CPU”), which can hide latency. (Note, though, that performance
improvements range from zero to about 30 percent.)

• To fully exploit this for a single application, need multiple threads (or
processes).

CSCI 1321 February 26, 2009

Slide 5

Another Approach — Clusters

• In addition to hardware support for shared-memory parallelism —

Ubiquity of networking makes almost any PC part of a “cluster”.

Slide 6

Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”
executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something
(such as I/O) run at the same time. Operating system basically simulates one
CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and
activities of the O/S itself. It also means you could get better performance
with more than one CPU/core — can potentially have more than one thing
actually running at the same time.

• But there are some potential pitfalls, involving interaction among processes.

CSCI 1321 February 26, 2009

Slide 7

Processes Versus Threads

• Two basic ways to implement this idea of concurrent execution — “processes”
and “threads”.

• “Processes” don’t (usually) share memory, and must communicate in some
fairly restricted way.

• “Threads” do share memory, which is convenient but has potential pitfalls
(“race conditions”).

Slide 8

Multithreading in Java

• Interestingly enough, Java has included support for multiple threads from the
beginning — probably because it’s a good mental model for GUIs.

• Interaction among Java threads based on “monitors” (see textbooks on
operating systems, parallel programming — idea goes back to 1975 papers
by Hoare and Brinch Hansen). Java leaves out some aspects of full-fledged
idea, but keeps enough to be useful.

CSCI 1321 February 26, 2009

Slide 9

Threads in Java

• Thread class provides basic functionality. To start a new thread, make a
Thread object and call its start method. Two choices:

– Create a Thread with an object that implements Runnable — run
method has code to execute.

– Define a subclass of Thread that has a run method with code to
execute.

• Interthread interaction based on (implicit) locks:

– Every object (and every class) has a lock.

– synchronized methods must acquire lock — so only one at a time
can run.

– wait gives up the lock and sleeps; notify and notifyAll wake
up one/all sleeping thread(s).

Slide 10

Threads in Java, Continued

• Other useful methods:

– Thread.sleep makes current thread sleep for some interval.

– t.join wait for Thread t to finish.

– t.interrupt interrupts Thread t (which can check whether it has
been interrupted with isInterrupted — safe/approved way for one
thread to stop another.

• Can set thread priorities — sometimes useful, but not a substitute for proper
synchronization.

• Lots of new threads-related stuff in Java 1.5 / 5.0
(java.util.concurrent package).

CSCI 1321 February 26, 2009

Slide 11

Uses for Threads in Java

• Formerly many uses for multithreading in GUIs (e.g., animation), but now
most can be accomplished with new features of GUI classes (e.g., timers).
Still useful, however, if you want something that might take a while to execute
in the background.

• Multithreading also potentially useful for improving performance of
computationally intensive code.

• Examples later

Slide 12

Java GUI Classes and Multithreading

• Currently Java GUI classes are implemented in terms of an “event dispatch
thread” (EDT) — something that listens (to some part of the operating
system/environment?) for “events” (from keyboard or mouse, e.g.) and
“dispatches” them by calling appropriate methods associated with GUI
components.

• Not all of what’s under the hood is thread-safe, so Sun recommends that all
changes to GUI components be done in the EDT. This happens automatically
with listener methods. Accesses from the “main” thread and from other
threads should use SwingUtilities.invokeLater. (See example
from last time again.)

CSCI 1321 February 26, 2009

Slide 13

Multithreading and the Game Framework

• Listener methods run in the EDT. Other methods run in a different thread.

• Problem? Maybe. Concurrent access to simple primitive types (boolean,
int) is pretty safe — the worst that’s likely to happen is that changes made
by one thread aren’t immediately visible to others. But anything involving
more complicated data structures is probably a bad idea without explicit
synchronization.

Slide 14

A Little About Homework 3

• In this homework you start writing code for your player, to replace the stick
figure in the starter game.

• Key parts of this assignment are making the player

– interact with different kinds of blocks.

– move in response to keyboard or mouse input from human player.

(If these don’t apply to your game, talk to me about whether there are
reasonable substitutes.)

For design phase, you just need to describe this interaction.

CSCI 1321 February 26, 2009

Slide 15

Homework 3, Continued

• Player defines some constants you should use.

• You will implement KeyListener or one/both of the mouse-listener
interfaces. When you do this, the framework will deliver key and/or mouse
“events” to you.

• Most logic will go in update, getUpdateTime, and the listener
methods.

Slide 16

Minute Essay

• None — sign in.

