
CSCI 1321 March 31, 2009

Slide 1

Administrivia

• Reminder: Homework 4 code due today. Homework 5 due dates posted (next

week).

• Reminder: Quiz 4 Thursday. Likely topic is linked lists.

Slide 2

Java GUI Libraries — Recap

• Many, many classes for GUI components — pre-defined components (e.g.,

JButton), containers (e.g., JPanel).

• How things are arranged on screen is controlled by “layout manager”. Can

nest containers, giving them different layout managers.

• How things work depends on “event listener” methods. Good place to use

anonymous inner classes.



CSCI 1321 March 31, 2009

Slide 3

Java GUI Libraries — Design Tips

• Probably better not to mix AWT and Swing unless necessary (e.g., unless

you’re doing an AWT-only program, prefer JFrame to Frame).

• To find out how to use components — skim online API, Sun tutorials (follow

links from API), look for examples similar to what you want to do.

• For small programs, okay to put GUI and underlying data all in one class. For

larger programs, consider separating them — “Model/View/Controller” design

pattern.

• GUI components that must be accessed by more than one method — e.g., by

listener methods — should be instance variables. Other components can

often be declared locally in constructor.

Slide 4

Graphics in Java — Custom Components

• Predefined components (JButton, etc.) do a lot, but what if you want

something that’s not provided? in particular, you want to control the image

yourself?

• Make a custom component — define a subclass of a component that provides

some of the needed functionality, and override the method that defines what’s

displayed.

E.g., subclass JPanel and override paintComponent, to include your

code to “paint” the panel.

• Call repaint when ready to redisplay.



CSCI 1321 March 31, 2009

Slide 5

Custom Painting

• Method to override is

public void paintComponent(Graphics g).

g is a “graphics context” that you can draw on. (Actually it’s a

Graphics2D.) Tutorial recommends calling

super.paintComponent(g) before doing anything else.

• Can get dimensions of panel with getSize, getHeight, getWidth,

getInsets.

• Can set colors, draw shapes, lines, text, etc., etc. — see Graphics and

Graphics2D class. Coordinate system is similar to what you’re using in

your game. See code in BasicBlock for simple example.

Slide 6

Custom Painting, Continued

• General advice — look over the methods of Graphics and

Graphics2D; if confused, follow links to tutorial(s) and look for a suitable

example to adapt.

• Let’s look at example(s) . . .



CSCI 1321 March 31, 2009

Slide 7

Drawing and Filling Shapes

• “Draw” means draw outline only; “fill” to draw and fill.

• Graphics provides methods for doing simple shapes. Graphics2D

provides more general methods. (Look at some shapes in

java.awt.geom.)

• You already know (from your game) about simple way to control color of

what’s painted. The Graphics2D class provides a lot more options (next

slide).

Slide 8

Drawing and Filling Shapes, Continued

• Graphics2D provides, among other things:

– setPaint to fill shapes with simple color, gradient fill, etc.

– setStroke to draw outlines with different widths, etc.

– setFont to draw text in different fonts. (This works for text components

such as JLabel too.)

• And there’s more — “clipping”, affine transformations (e.g., rotation —

transformations in which parallel lines stay parallel), etc., etc.

• (Examples as time permits.)



CSCI 1321 March 31, 2009

Slide 9

Minute Essay

• None — sign in.


