
CSCI 1321 April 16, 2009

Slide 1

Administrivia

• Reminder: Homework 5 code due today (okay to turn in tomorrow if coming to
office hours).

• Reminder: Homework 6 design due Tuesday.

Slide 2

Homework 6 — GUI Features

• Overall layout of game is BorderLayout, with screen in middle and
“game status panels” on four sides — returned by
getGameStatusPanel (in player), usually a JPanel.

• Menu bar is in GameSetup, can be modified.

• Screen editor program has support for “editing properties” (of screens, blocks,
entities) — getEditPropertiesPanel. Could use this to give
slightly different properties to different instances (e.g., walls of different colors,
enemies with different speeds).

• Homework 6 asks you to use these features to (1) display something, and
(2) get input from the user (either in the game or in the screen editor).



CSCI 1321 April 16, 2009

Slide 3

Recursion — Recap and More Examples

• Recap — identify base case, figure out how to split any other case into
smaller instance(s) of problem plus othe processing.

• Example — list-like data structures.

Slide 4

Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from
parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf
node).

• Another, recursive definition — tree is one node connected by edges to 0 or
more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.



CSCI 1321 April 16, 2009

Slide 5

Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data
and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be
sufficiently useful in practice — “binary tree”. Then Node consists of pointers
to data and left and right subtrees.

Slide 6

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there
something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.
(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)



CSCI 1321 April 16, 2009

Slide 7

Minute Essay

• None — quiz.


