
CSCI 1321 September 2, 2010

Slide 1

Administrivia

• If you aren’t subscribed to CSMajors, it might be a good idea — we circulate

announcements of CS-related events, job opportunities, etc. Not just for

majors. Instructions for subscribing on department home page.

• First meeting of ACM next Wednesday in HAS 329 at 4:04pm.

Slide 2

Java Basics — Recap

• Java programs consist of classes. Each class can contain

– Variables — instance and static.

– Methods — instance and static.

– Classes (more about this later).

Notice that each source-code file can contain at most one public class.

• Variables and methods can be public or private.

• Variables and methods can be final. (Use static final for

constants.)

CSCI 1321 September 2, 2010

Slide 3

Java Syntax

• Basic syntax based on C — variable declarations, method definitions,

expressions — with some additions (as discussed in class and in the text).

• (This was by design.)

Slide 4

Variable Types

• Primitive types provided for efficiency (not purely object-oriented):

– boolean, short, int, long, float, double are pretty much as

in C.

– char is 16-bit Unicode.

– byte is 8-bit byte.

• All other variables are references to objects, similar to pointers:

– MyClass x creates a reference, not an object — use new to create

objects.

Type of x is MyClass (just as type of an int variable is int).

– Value of null means it doesn’t point to anything.

CSCI 1321 September 2, 2010

Slide 5

Variable Scope

• As in C, variables have “scope” (region of the program in which they’re valid),

but possibilities are somewhat different:

• Instance variables — data for object, can be used in any method.

• Class variables — data for class (one copy for all objects), can be used in any

method.

• Local variables — declared within a method or block, only valid within that

method or block. Notice also that you can declare variables anywhere, not

just at start of method.

• Advice: Use narrowest scope that will work.

Slide 6

Creating Objects

• Create object of class MyClass using new operator, e.g.,

MyClass x = new MyClass();

This object contains its own copy of all instance variables defined in

MyClass.

• new above invokes a constructor for MyClass — method with no return

type. Can have any number of these, with zero or more parameters. If none is

supplied, compiler generates one with zero parameters. Useful for setting

initial values for variables.

CSCI 1321 September 2, 2010

Slide 7

Deleting Objects

• No need to explicitly free/delete objects — Java has “garbage collection”.

• (Contrast with C, where you must free dynamically-allocated memory

yourself.)

Slide 8

Referencing Objects, Variables, and Methods

• Within MyClass, reference members of class (variables and methods)

using just their names. If you have multiple objects of this class, which one is

meant? “current object”.

• In code using MyClass, reference as, e.g., x.foo(parameters) for

instance methods, and MyClass.staticFoo(parameters) for

static methods.

Similar syntax for variables, but likely to be used less, since variables are

normally private. (Exception is constants.)

CSCI 1321 September 2, 2010

Slide 9

Passing Parameters

• Syntax is like C.

• As in C, everything is passed by value. (Some languages provide other

options, e.g., passing “by reference”.)

• C has pointers, which can point to any data type, and this allows you fake

passing parameters by reference. Not possible in Java — Java has

references, which can only point to objects.

• However, when you pass an object reference by value, both caller and callee

have references to the same object, so in some ways you appear to be

passing the object by reference.

Slide 10

Comments

• Can use C-style comments, C++-style comments.

• One type of C-style comments are special — “documentation comments” or

“Javadoc comments”. These start with /** and end with */, and the

command-line tool javadoc turns them into HTML documentation similar

to what Sun/Oracle provides for the library functions. (IDEs often also have a

way to do this.)

• Use documentation comments to describe what people using your class need

to know. Use other types of comments to document code itself — something

that would be useful to humans reading it.

CSCI 1321 September 2, 2010

Slide 11

Java Basics, Continued — Control Structures

• Most control structures are the same as C — if , while, do, switch,

for, etc. Also a simplified for, as of Java 5.0 (a.k.a. 1.5), called “for-each”.

More about it later.

• Also have “exceptions” — a way to deal with unusual or error conditions,

break out of current flow of control. Can be “thrown” and “caught” (or not

caught, in which case the program crashes). More about them later.

Slide 12

Example

• Example — TwoDPoint class from last time.

CSCI 1321 September 2, 2010

Slide 13

Minute Essay

• What variables might be useful in a Rectangle class? a Circle class? a

Triangle?

Slide 14

Minute Essay

• For a rectangle, maybe a TwoDPoint with one of its corners and integers

representing width and height.

• For a circle, a TwoDPoint with its center and an integer representing

radius.

• For a triangle, three TwoDPoints representing its vertices.

• (Or you may have other answers!)

