
CSCI 1321 September 16, 2010

Slide 1

Administrivia

• Reminder: Homework 1 design due Tuesday.

Slide 2

Inheritance, Review/Continued

• Inheritance allows you to define specialized versions of classes, called

subclasses.

• Subclasses “inherit” variables and methods from parent classes. This helps

avoid duplication of code. (But subclasses can override parent class’s

variables/methods.)

• Subclasses also define subtypes. This can make it easier to add functionality.

• Look again at bank-account example — write the Bank class to work mostly

with Accounts and it will be easy (easier?) to add new account types.



CSCI 1321 September 16, 2010

Slide 3

Inheritance Versus Interfaces

• What if you don’t need/want the superclass to provide any code? you just

want it to define a “contract” that all subclasses must meet (i.e., a list of

methods they must provide?) then you want a Java interface.

• In the Account example, we could define a PaysInterest interface

with method addMonthlyInterest. This would let us decide for each

type of account whether it should pay interest — e.g.,

CorporateAccount and some subclasses of PersonalAccount.

• A class can “implement” as many interfaces as you like.

(This helps if you want a class to inherit from multiple classes — Java, unlike

some languages (e.g., C++), doesn’t allow that because of possible

confusion/ambiguity, but you can fake it by implementing multiple interfaces.)

Slide 4

Interfaces and Types

• Interfaces also define types. So if CorporateAccount implements

interface PaysInterest, we can use a Account anywhere a

PaysInterest is required.

PaysInterest p = new CorporateAccount();

• This is “inclusion polymorphism” — and is what will allow your project code to

plug neatly into Dr. Lewis’s framework. (The framework is written in terms of

interfaces such as Block and Screen; your classes will implement those

interfaces.)



CSCI 1321 September 16, 2010

Slide 5

Homework 1 Clarification(s)

• Design phase should be relatively straightforward. (Short demo of generating

HTML documentation.)

• (We’ll talk about this next time.) Code (due next Thursday) will be short, but

may take some time to write. Far from unusual for students to feel a little lost

at this point — so try on your own, then ask! One comment now for when you

get to that point:

Method instance in BasicGameSetup mentions “singleton”. What’s

that about? Reference to “singleton design pattern” — idea that for some

classes there should only ever be one instance.

Slide 6

Compiling and Running Java Programs, Revisited

• (We’ll talk about this next time.)

• Recall discussion from a previous class about differences between Java and

C with regard to compiling, linking, and executing — Java source code

compiled to byte code, no linking step (such as is done for C), instead byte

code for all classes loaded at runtime by the JVM.

• Where does the JVM find needed byte code? via “class path” — which can

include

– Directories/folders, such as the one(s) containing byte code for your

classes — look for .class files.

– “JAR (Java Archive)” files, which can contain byte code for many classes.

Adding a JAR file to the default class path is a little like adding a flag such as

-lm when you compile a C program.



CSCI 1321 September 16, 2010

Slide 7

Minute Essay

• None — quiz.


