
CSCI 1321 October 7, 2010

Slide 1

Administrivia

• Reminder: Homework 2 code due today (midnight). If you’re having trouble,

okay to turn in a preliminary version, but ask for help! office hours today, and I

could be available tomorrow afternoon after 1:30pm.

• Quiz 3 Tuesday. Homework 3 due dates posted. Midterm 10/21.

Slide 2

Sorting and Searching, Continued

• Recall the problems — “sorting” to put an array (or list) in order (based on

some ordering), “searching” to search for an element in an array (or list).

• Sorting algorithms include simple-but-slow (bubble sort, selection sort,

insertion sort), faster-but-more-complex (to be discussed later).

• Searching algorithms include sequential search, binary search (faster but

required sorted array/list).

• What do “slower” and “faster” mean here? Defined in terms of “order of

magnitude” of algorithm.



CSCI 1321 October 7, 2010

Slide 3

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 4

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1321 October 7, 2010

Slide 5

Order of Magnitude of Sorts and Searches

• Usually we count comparison (and sometimes also swaps).

• How many comparisons for simple-but-slow sorts?

• How many for sequential and binary search?

Slide 6

Order of Magnitude of Sorts and Searches, Continued

• Bubble sort: For N elements, first pass through the array makes N − 1

comparisons, next pass makes N − 2, etc. Total is (N − 1)(N − 2)/2 —

which in order-of-magnitude terms is O(N2).

• Selection sort and insertion sort are also O(N2).

• Quicksort and mergesort are O(N log N). (More about this later.)

• Sequential search is O(N), binary search O(log N).



CSCI 1321 October 7, 2010

Slide 7

Polymorphic Sorting and Searching

• Sort/search algorithms are (mostly) independent of the kind of data being

sorted — all of the comparison-based sorts just require that a “total ordering”

relation on the data (for any two distinct elements a and b, a < b or b < a).

(“Comparison-based”? yes, as opposed to, e.g., radix sort or counting sort

described last time.)

• So we’d like to be able to turn the algorithm into code just once, and let it

operate on different kinds of data — “polymorphic sort”. C’s qsort is

polymorphic, though the mechanics are a bit ugly. Java provides nicer

mechanisms — for objects anyway.

Slide 8

Polymorphic Sorting and Searching in Java

• Java library interface Comparable is helpful in writing comparison-based

sorts. (Look at its API. Example code as time permits.)

• But what if you sometimes want to sort data one way and sometimes another?

With C’s qsort you can pass in a function pointer. In Java? (Next time.)



CSCI 1321 October 7, 2010

Slide 9

Minute Essay

• For some well-known problems, the best known algorithms are O(N !)

(N factorial). Why is this a problem (or is it?).

Slide 10

Minute Essay Answer

• Because N ! increases so fast that it severely limits the size (N ) of the

problem that can be solved in a reasonable amount of time.


