
CSCI 1321 October 14, 2010

Slide 1

Administrivia

• Reminder: Homework 3 design due today, code Tuesday.

Slide 2

A Little About Homework 3

• In this homework you start writing code for your player, to replace the stick

figure in the starter game.

• Key parts of this assignment are making the player

– interact with different kinds of blocks.

– move in response to keyboard or mouse input from human player.

(If these don’t apply to your game, talk to me about whether there are

reasonable substitutes.)

For design phase, you just need to describe this interaction.



CSCI 1321 October 14, 2010

Slide 3

Homework 3, Continued

• Player defines some constants you should use.

• You will implement KeyListener or one/both of the mouse-listener

interfaces. When you do this, the framework will deliver key and/or mouse

“events” to you.

• Most logic will go in update, getUpdateTime, and the listener

methods.

• A general comment: If you find yourself looking up something like the ASCII

value of a character, or the value of one of the game framework’s constants

— stop. There is probably an easier and more Javaesque way to do what you

want.

Slide 4

Polymorphic Sorting and Searching in Java, Recap

• Java library interface Comparable is helpful in writing comparison-based

sorts. (Example code from last time.)

• But what if you sometimes want to sort data one way and sometimes

another? With C’s qsort you can pass in a function pointer. In Java? You

can’t do that. What you can do (very typical) is create an object whose

purpose is to contain the desired code. Here, we want something to hold our

compareTo method. Simplest to illustrate using a library class (next slide).



CSCI 1321 October 14, 2010

Slide 5

Sorting and Searching Arrays in Java

• Writing your own sorting routines is pedagogically useful, but in practice you

would probably use something from Java library.

• Arrays class has some useful methods. The ones for objects require either

a class that provides a compareTo method, or a Comparator object

that defines the ordering you want.

Slide 6

Abstract Data Types

• “Abstract data type” (ADT) is defined as

– A set of values.

– A set of operations on those values.

• In other words — something that stores data (in an unknown form) and

provides a standard interface for dealing with it.



CSCI 1321 October 14, 2010

Slide 7

Stack ADT

• Value — list of elements.

• Operations — push, pop, “empty?”

• Implementing this? might be a good example of

– Defining a (generic) interface.

– Writing a class to implement it (using arrays — for, um, fun? practice?).

– Working with exceptions.

Slide 8

Queue ADT

• Value — list of elements.

• Operations — enqueue, dequeue, “empty?”

• We could implement similarly to what we did for stacks . . .



CSCI 1321 October 14, 2010

Slide 9

Minute Essay

• None — quiz.


