
CSCI 1321 December 2, 2010

Slide 1

Administrivia

• Reminder: Homework 7 design due today, code (and plots) Tuesday.

• Homework 8 (tidy up all loose ends in your code, make any improvements

you care to) due the day of the final.

• Sample programs page updated (slightly more elaborate version of the binary

search tree from last time, I/O and networking examples).

Slide 2

I/O In Java — Overview

• Abstract view — “file” is a collection of data. Java provides methods for

sequential and “random” (non-sequential) access.

• Sequential file access is via “streams” — concept that applies to other kinds

of sequential I/O (stdin/stdout, sockets, etc.).

• Stream — sequential flow of data.

– Input streams connect program with an outside “source” (stdin, file, socket,

etc.). (If data is characters, use “reader” instead.)

– Output streams connect program with outside “destination”. (If data is

characters, use “writer” instead.)



CSCI 1321 December 2, 2010

Slide 3

Stream I/O

• I/O in Java often requires at least two classes:

– One that connects to the desired source/destination (file, socket, array,

string, etc.).

– One that defines interface for program (character or binary data,

byte-by-byte or a line at a time, etc.)

• Short examples:

BufferedReader rdr =

new BufferedReader(new FileReader("in.txt"));

String s = rdr.readLine();

PrintWriter pw =

new PrintWriter(new FileWriter("out.txt"));

pw.println("hello, world");

Slide 4

I/O and Exceptions

• Many I/O methods throw “checked” exceptions — which your code must

explicitly do something about. Sensible but sometimes annoying.

• First example from previous page would not compile — either declare that the

method it’s in throws an IOException, or use a “try” block, e.g.,

try {

BufferedReader rdr =

new BufferedReader(new FileReader("in.txt"));

String s = rdr.readLine();

}

catch (FileNotFoundException e) {

System.err.println(e); // or better error message

}

catch (IOException e) {

System.err.println(e); // or better error message

}



CSCI 1321 December 2, 2010

Slide 5

Character-Based Stream I/O

• Prior to Java 1.5, typical way to parse input was to read a line at a time and

use String methods, Integer.parseInt,

Double.parseDouble, etc. StringTokenizer,

StreamTokenizer also sometimes useful.

• Now, Scanner class may do what you need. split() method of

String class may also be useful.

• For output, PrintWriter methods will likely be useful. Notice that Java

also has (as of 1.5) a printf!

• (Example — “almost an editor” program(s).)

Slide 6

Binary Stream I/O

• Can also read/write binary data:

– DataInputStream, DataOutputStream to write out primitive

types.

– ObjectInputStream, ObjectOutputStream to write out

primitives, Serializable objects.

• Object serialization:

– Object and all referenced objects (except static and transient

variables) are turned into sequential stream of bytes.

– Can override readObject, writeObject to control what happens

more precisely.

• (Example — “silly class” and saver.)



CSCI 1321 December 2, 2010

Slide 7

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known

ports”, others available for applications.

Slide 8

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.



CSCI 1321 December 2, 2010

Slide 9

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”

example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).

• (To be continued . . . )

Slide 10

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.

• Simple example in binary-I/O program from last. More complex example —

chat program (next time).



CSCI 1321 December 2, 2010

Slide 11

Minute Essay

• None — quiz.


