
CSCI 1321 December 7, 2010

Slide 1

Administrivia

• Reminder: Homework 7 code due today.

• Homework 8 (final version of game) due day of final. Description on Web.

• We need some “not accepted past” dates. I propose next Monday (11:59pm)

for Homework 1 through 7, day/time of exam for Homework 8.

• Final is December 15 at 8:30am. Review sheet on Web. Review session next

Tuesday (12/14) at noon.

• Information about office hours this week and next coming by e-mail soon.

Slide 2

More Administrivia

• “What about our grades?” You will get information by e-mail as soon as I have

it.

• Recall(?) weights from syllabus:

– 50 points class participation (attendance).

– 50 points quiz scores (lowest dropped).

– 300 points exams (100 midterm, 200 final).

– 480 points homework.



CSCI 1321 December 7, 2010

Slide 3

Networking in Java — Review/Recap

• Many library classes to support networking.

• Some provide application-level support — e.g., URL. Others provide

lower-level support — e.g., Socket.

• Many work by supplying input/output streams, which can be used in the same

way as other input/output streams (except that extra caution may be needed

to make sure output isn’t buffered longer than it needs to be).

Slide 4

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.

• Simple example in binary-I/O program from last. More complex example —

chat program (if time permits).



CSCI 1321 December 7, 2010

Slide 5

Client/Server Programming with Sockets — Chat
Example

• In client/server programming, program must define “protocol” for clients and

server to communicate. For chat program, fairly simple:

• Interaction starts with client sending identifying information and server

responding with list of participants.

• Interaction continues with client sending messages to server, which

broadcasts them (to other clients), and accepting broadcast messages from

server.

• Interaction ends when client sends “done” message to server, which

broadcasts this information to other clients.

Slide 6

Client/Server Programming with Sockets — Chat
Example, Continued

• Code is fairly simple — classes for client and server, plus inner class for

server to keep track of clients. Only tricky bits are related to concurrency . . .

• Server needs to be able to communicate with multiple clients asynchronously

(i.e., no way to know which one will send a message next). One way to deal

with this — start a new thread for each client. Must then be sure these

threads don’t concurrently modify shared data (here, list of clients).

• Client needs to be able to present GUI and also listen for messages

broadcast by server. Less coding here since GUI runs in its own thread

automagically, so we can use the main thread to listen for message from

server. Only complication is that anything in this thread that needs to change

the GUI must use SwingUtilities.invokeLater to be sure

changes happen in event dispatch thread.



CSCI 1321 December 7, 2010

Slide 7

Networking in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too.

Slide 8

Networking in Java — RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java “remote object”

class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• Compile and execute:

– Compile as usual. (Prior to Java 1.5, an extra step was required to

generate “stubs” to be used in communicating with remote objects as

remote objects. No longer necessary!)

– Make classes network-accessible.

– Start rmiregistry.

– Run server and clients as usual.



CSCI 1321 December 7, 2010

Slide 9

Networking in Java — RMI

• Example — revised chat program. Design is somewhat more elaborate than

absolutely necessary, in an attempt to be modular and flexible:

– Common interface ChatParty for remote objects for both client and

server, with subinterfaces ChatClient and ChatServer, and

classes implementing all of these.

– Interface ChatClientUI for non-remote local UI for clients, with two

implementations.

• Need for multithreading in server goes away — all handled by RMI under the

hood (though we still need to be careful about possible concurrent access to

variables — experiment suggests RMI may use multiple threads). In client UI,

however, we still need separate threads to get input from the user and listen

for messages from the server.

Slide 10

Course Recap — What Did We Do?

• Java basics.

• Object-oriented programming — polymorphism, inheritance, etc. Not stressed

much in class, but game is a good example of a non-trivial o-o design.

• Basic ADTs — stacks, queues, trees (sorted and heaps); different

implementations (arrays versus dynamic data structures using references).

• Recursion review.

• Tour of the Java libraries — GUIs, graphics, I/O; a very little about threads

and networking.

• A fairly large programming project involving using someone else’s code.

• To get a sense of what you learned — compare what you knew in January to

what you know now.



CSCI 1321 December 7, 2010

Slide 11

Minute Essay

• How did the course compare to your expectations/goals? Did you learn what

you hoped to learn?


