
CSCI 1321 February 4, 2010

Slide 1

Administrivia

• Reminder: Homework 1 design due today. (Okay to turn in tomorrow.) Code

due Tuesday. Project description has been reorganized a bit but contains all

the same information.

• A request: You will turn in most if not all work for this course by e-mail. Please

include the name or number of the course in the subject line of your message,

plus something about which assignment it is, to help me get it into the correct

folder for grading.

Slide 2

Homework 1 Clarification(s)

• Far from unusual for students to feel a little lost at this point — so try on your

own, then ask!

• Method instance in BasicGameSetup mentions “singleton”. What’s

that about? Reference to “singleton design pattern” — idea that for some

classes there should only ever be one instance.

CSCI 1321 February 4, 2010

Slide 3

Compiling and Running Java Programs, Revisited

• Recall discussion from a previous class about differences between Java and

C with regard to compiling, linking, and executing — Java source code

compiled to byte code, no linking step (such as is done for C), instead byte

code for all classes loaded at runtime by the JVM.

• Where does the JVM find needed byte code? via “class path” — which can

include

– Directories/folders, such as the one(s) containing byte code for your

classes — look for .class files.

– “JAR (Java Archive)” files, which can contain byte code for many classes.

Adding a JAR file to the default class path is a little like adding a flag such as

-lm when you compile a C program.

Slide 4

Error Handling — The Problem

• When you have a function in which something goes wrong, how do you tell

the rest of the program?

• Examples:

– Calling a square-root function with a negative number.

– Trying to open (for reading) a file that doesn’t exist.

– Trying to convert a string to an integer, when the string doesn’t contain

something appropriate.

CSCI 1321 February 4, 2010

Slide 5

Error Handling — “Ostrich Approach”

• Idea — hope it doesn’t happen.

• Might sort of work if you tell users in your documentation, and maybe use

assertions.

• But users make mistakes, and what then? e.g., out-of-bounds array access.

• And it may not always be easy to tell what inputs will produce errors (e.g., file

access).

Slide 6

Error Handling — Return Codes

• Idea — have method return an error code if something goes wrong.

• Works well in situations where it might be hard to avoid sometimes causing

the error.

• But requires that users of the method check for the “error” return value —

tedious and error-prone.

• And what about methods that want to return a value? is it always possible to

designate some value as “this means an error”?

CSCI 1321 February 4, 2010

Slide 7

Error Handling — Setting Flags

• Idea — have method set a flag somewhere if something goes wrong.

• Also useful in situations where it might be hard to avoid sometimes causing

the error.

• Again, though, users have to check.

• Requires either an extra parameter (and changing it may be tricky in Java) or

a “global” variable somewhere.

Slide 8

Error Handling — Exceptions

• Idea — when something goes wrong, “throw an exception”. What then?

• Aside — as program runs, we can think of it keeping a stack of nested

method calls (“push” when we call a method, “pop” when one returns).

• When an exception is thrown, runtime system works its way up this stack until

it finds something to “catch” the exception. If it never finds anything, it

terminates the program (actually the thread).

• Mostly this is what Java library classes use to indicate errors — but some use

return codes, so read documentation carefully.

CSCI 1321 February 4, 2010

Slide 9

Dealing With Exceptions

• Catching an exception — “try block”:

try { }

catch (TypeOfException e) { }

catch (OtherTypeOfException e) { }

finally { } // optional

• Letting an exception “bubble up”:

void foo() throws WeirdException { }

• Exception class has some useful methods, e.g.,

printStackTrace.

Slide 10

Checked Versus Unchecked Exceptions

• “Checked exceptions” — ones that sensible programs are supposed to do

something about (e.g., file not found).

Must either catch these, or declare that your method lets them bubble up (and

then callers must do likewise).

• “Unchecked exceptions” — ones for which maybe the reasonable thing to do

is to just let the program crash.

Can catch these, or let them bubble up (with or without declaration), possibly

eventually crashing the program.

CSCI 1321 February 4, 2010

Slide 11

Throwing Exceptions

• Throwing an exception:

throw new TypeOfException(....)

• Usually best to try to find an existing Exception class that fits, but can

declare your own.

• Example — withdraw method in our bank account class.

Slide 12

Exceptions Versus Other Approaches

• What’s the attraction?

– Nice mechanism for dealing with errors and unexpected events.

– Unlike return codes, can’t just be ignored.

• But checked exceptions can be annoying to deal with . . .

CSCI 1321 February 4, 2010

Slide 13

Bank Account Example, Revisited

• Several methods need some sort of error handling — withdrawMoney

needs to do something if amount is too large, and both it and

depositMoney could check for negative input.

• And while we’re making changes, we should make some other changes:

change the print method to the more idiomatic toString, add code to

the method to pay interest, and improve the test code.

• (We’ll do this next week.)

Slide 14

Minute Essay

• None — quiz.

