
CSCI 1321 February 16, 2010

Slide 1

Administrivia

• Reminder: Homework 1 code due today.

• Quiz 2 Thursday. Notice that quiz solutions are available via the course Web

site (after the quiz).

• Homework 2 writeup to be on the Web later today / early tomorrow. Due dates

will be next week.

• All homework is considered pledged work. Write “pledged” on hardcopy work,

and include it in comments for programming assignments.

Slide 2

Strings in Java

• In C, “strings” are just arrays of characters, terminated by a null character.

Simple, but many potential problems (such as trying to read more characters

from input than will fit into allocated space).

• In Java, there’s a library class, String.

• To see what’s available, look at the API . . .



CSCI 1321 February 16, 2010

Slide 3

String Class, Continued

• In general, no operator overloading in Java, with one exception — “+” for

strings. Non-string objects converted using (their) toString method.

Primitives converted in the “obvious” way.

• To compare two strings, “==” is rarely what you want. Instead, use equals.

• Strings are “immutable” — once created, can’t be changed. (Why? allows

them to be safely shared.) Methods you would think might change the value

return a new string.

• Use StringBuilder if you need something you can change, or for

efficiency.

• Let’s do some examples . . .

Slide 4

Sidebar — Immutable Objects

• String is an example of a class that’s “immutable” — once created, objects

can’t be changed. If you look at the API for String, you notice that

methods that “change” the string actually return a new one.

• This sounds inconvenient, right? What advantages might it have?

(Remember that “object” variables in Java are really references. So two

variables may both refer to the same object.)



CSCI 1321 February 16, 2010

Slide 5

Arrays in Java

• Arrays are objects — unlike in C/C++, where they’re basically pointers.

• Declaring (references to) arrays — denote by putting brackets after type.

• Creating arrays — use new, e.g.,

new int[10]

new String[n]

(Notice that the second one only creates references.)

• All arrays have length variable.

• Otherwise, syntax is same as C/C++; indices start at 0.

• Java runtime does automatic bounds-checking — unlike in C/C++, get

“exception” rather than random problems.

Slide 6

Multidimensional Arrays

• “Arrays of arrays”, e.g.,

int[][] x = new int[10][100];

declares an array of 10 arrays of 100 ints.

• Reference elements with row, column indices, e.g.,

x[row][col] = 10;

• Both dimensions accessible:

x.length = ?

x[0].length = ?



CSCI 1321 February 16, 2010

Slide 7

Minute Essay

• Write code to define an array of four Strings and fill it with data of your

choice.

• Write code to define a two-by-three array of int and set each element to the

sum of its row and column.

• If I declare an array of MyClass references:

MyClass[] objs = new MyClass[10];

do all the elements of objs have to be instances of MyClass, or can they

be instances of some other class?

Slide 8

Minute Essay Answer

• One solution (array of Strings):

String[] s = new String[4];

s[0] = "hello";

/* other three lines similar */

• One solution (array of ints):

int[][] a = new int[2][3];

for (int row = 0; row < a.length; ++row)

for (int col = 0; col < a[0].length; ++col)

a[row][col] = row + col;

• Elements of an array declared as MyClass[] can be instances of any

“subtype” of MyClass — MyClass itself, or any subclasses. (Trick

question!)


