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Administrivia

• Reminder: Homework 1 code due today.

• Quiz 2 Thursday. Notice that quiz solutions are available via the course Web

site (after the quiz).

• Homework 2 writeup to be on the Web later today / early tomorrow. Due dates

will be next week.

• All homework is considered pledged work. Write “pledged” on hardcopy work,

and include it in comments for programming assignments.
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Strings in Java

• In C, “strings” are just arrays of characters, terminated by a null character.

Simple, but many potential problems (such as trying to read more characters

from input than will fit into allocated space).

• In Java, there’s a library class, String.

• To see what’s available, look at the API . . .
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String Class, Continued

• In general, no operator overloading in Java, with one exception — “+” for

strings. Non-string objects converted using (their) toString method.

Primitives converted in the “obvious” way.

• To compare two strings, “==” is rarely what you want. Instead, use equals.

• Strings are “immutable” — once created, can’t be changed. (Why? allows

them to be safely shared.) Methods you would think might change the value

return a new string.

• Use StringBuilder if you need something you can change, or for

efficiency.

• Let’s do some examples . . .
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Sidebar — Immutable Objects

• String is an example of a class that’s “immutable” — once created, objects

can’t be changed. If you look at the API for String, you notice that

methods that “change” the string actually return a new one.

• This sounds inconvenient, right? What advantages might it have?

(Remember that “object” variables in Java are really references. So two

variables may both refer to the same object.)
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Arrays in Java

• Arrays are objects — unlike in C/C++, where they’re basically pointers.

• Declaring (references to) arrays — denote by putting brackets after type.

• Creating arrays — use new, e.g.,

new int[10]

new String[n]

(Notice that the second one only creates references.)

• All arrays have length variable.

• Otherwise, syntax is same as C/C++; indices start at 0.

• Java runtime does automatic bounds-checking — unlike in C/C++, get

“exception” rather than random problems.
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Multidimensional Arrays

• “Arrays of arrays”, e.g.,

int[][] x = new int[10][100];

declares an array of 10 arrays of 100 ints.

• Reference elements with row, column indices, e.g.,

x[row][col] = 10;

• Both dimensions accessible:

x.length = ?

x[0].length = ?
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Minute Essay

• Write code to define an array of four Strings and fill it with data of your

choice.

• Write code to define a two-by-three array of int and set each element to the

sum of its row and column.

• If I declare an array of MyClass references:

MyClass[] objs = new MyClass[10];

do all the elements of objs have to be instances of MyClass, or can they

be instances of some other class?
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Minute Essay Answer

• One solution (array of Strings):

String[] s = new String[4];

s[0] = "hello";

/* other three lines similar */

• One solution (array of ints):

int[][] a = new int[2][3];

for (int row = 0; row < a.length; ++row)

for (int col = 0; col < a[0].length; ++col)

a[row][col] = row + col;

• Elements of an array declared as MyClass[] can be instances of any

“subtype” of MyClass — MyClass itself, or any subclasses. (Trick

question!)


