
CSCI 1321 February 18, 2010

Slide 1

Administrivia

• Reminder: Homework 2 due next week (design Tuesday, code Thursday).

Slide 2

More Administrivia

• Some of you may want to do some or all development using your own

machines. You can do that, but you may want to also have a copy of your

code on our file servers. Two options for transferring files between machines:

– Simple, not particularly smart: Just copy .java files between machines.

Several options.

– More complicated to get started, more professional: Use CVS

(version-control software, Eclipse has built-in support).

• Some instructions in project description.



CSCI 1321 February 18, 2010

Slide 3

Homework 2 — General Comments

• Design phase is meant to be about defining classes and interfaces. For every

class (or interface) and every method, I want comments (can be be brief). For

classes, these should describe (to the best of your understanding) how they

fit into your game (e.g., “class for wall blocks”).

• In order to generate the HTML documentation (“javadoc”), you probably have

to have something minimally compilable. As suggested in assignment — you

can create skeleton/stub versions of methods, and fill in real code in code

phase. (For classes where you get code, though, might be simpler just to

copy it in right away, if there are comments in the code. Or copy comments

from game framework API.)

• Be sure to get the updated JAR file (should have name

PAD2F09Assn2.jar). With every assignment there will be a new JAR

file, as you replace various parts of the starter code with your code.

Slide 4

Homework 2 Design

• Interfaces YourBlock, YourEntity: In project API, referred to as

“general block type” and “general entity type”. You will use these as

replacements for BasicBlock and BasicEntity, and everywhere

else you use one of the framework’s generic classes.

• Player and game setup classes. Copy code from BasicPlayer and

BasicGameSetup and edit (change package line, block and entity

types). May want to change game setup more during code phase. Also edit

your main class from the first assignment.

Don’t worry about player for now — you will start writing your own in the next

assignment.



CSCI 1321 February 18, 2010

Slide 5

Homework 2 Design Continued

• Block class(es). These are blocks that make the playing field for your game.

Should have one class for each kind of block (floor, walls, ladders, anything

that doesn’t move). Try to define as many as you can. Copy code from

BasicBlock.

• Screen class (class implementing Screen interface). This is the most work

in this assignment. Eclipse can make stub methods for you. Copy and paste

comments from API.

Slide 6

Arrays in Java — Review

• Declaring and creating arrays in Java is different from in C — examples:

int[] x = new int[10];

String[] s = new String[n];

• Once created, though, some things are familiar — syntax for finding

elements, range of indices.

(Notice, though, that the second example above creates not String

objects, but references to String objects.)

• Under the hood, more differences — in C, arrays are almost indistinguishable

from pointers, but in Java, they’re objects, with a length field you can use

(but not change), and built-in bounds checking.

• Arrays as parameters to methods — what is passed is a reference to the

array, so the method can change its elements.



CSCI 1321 February 18, 2010

Slide 7

Sorting and Searching Arrays

• A common thing to do with arrays is sort them. (In theory this is covered in

PAD I, but in practice, not always, so we will spend time on it.)

• Various algorithms for sorting and searching. Some fast, some slow; some

simple, some complex. Decide which to use based on considerations of

simplicity versus speed.

• “Speed”? Yes, but expressed as order of magnitude (“big-oh notation”).

Slide 8

Simple (but Slow) Sorts

• Bubble sort. (First pass goes through the whole array, swapping consecutive

elements if out of order, so largest element bubbles to the end. Next pass

goes through all elements but last. And so forth.)

• Selection sort. (First pass finds largest element and puts it at end. Next pass

finds next-to-largest element and puts it at next-to-end. And so forth.)

• Insertion sort. (First pass inserts second element into list of first element.

Next pass inserts third element into list of first two elements. And so forth.)

And there are others . . .



CSCI 1321 February 18, 2010

Slide 9

Other Sorts

• Other comparison-based sorts (to be discussed later) include quicksort and

mergesort.

• Other methods include bucket sort and radix sort.

Slide 10

Searches

• Sequential search — start with the first element, examine elements one after

another until a match is found or there are no more to examine.

• Binary search (for sorted data only) — examine the middle element and either

stop if a match is found or recursively search the left or right half of the array.



CSCI 1321 February 18, 2010

Slide 11

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 12

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1321 February 18, 2010

Slide 13

Order of Magnitude of Sorts and Searches

• Usually we count comparison (and sometimes also swaps).

• For bubble sort, how many comparisons? For N elements, first pass through

the array makes N − 1 comparisons, next pass makes N − 2, etc. Total is

(N − 1)(N − 2)/2 — which in order-of-magnitude terms is O(N2).

• Selection sort and insertion sort are also O(N2).

• Quicksort and mergesort are O(N log N). (More about this later.)

• Sequential search is — ? (O(N)) Binary search? (O(log N))

Slide 14

Minute Essay

• None — quiz.


