
CSCI 1321 March 11, 2010

Slide 1

Administrivia

• Reminder: Homework 3 design due today, code Tuesday after break.

Slide 2

GUIs and Event-Driven Programming

• In PAD I (and in most previous in-class examples this semester) we usually

focus on programs with simple text-based input and output — a basically

synchronous interaction with the user.

• Programs with GUIs, though, are typically somewhat different — the main

program (which is sometimes hidden in library code) is often just a loop that

waits for keyboard/mouse input delivered by the program’s environment

(operating system, graphical environment, window manager, etc.).

• This leads to an “event-driven” programming model that can seem rather

different from what’s used for text-based programs.



CSCI 1321 March 11, 2010

Slide 3

Java GUI Libraries

• Java has evolved over its short lifetime, and sometimes there seems to be

more than one way to do something. One example — resizable arrays

(Vector versus ArrayList). Another — two groups of GUI-related

classes:

– Abstract Window Toolkit (AWT) — older, “look and feel” consistent with

platform’s windowing system.

– Swing — newer, more extensive, look and feel more aimed at being

consistent across platforms. Makes use of AWT components.

• Many, many classes to build GUIs:

– GUI elements —- buttons, labels, text boxes, menus, etc., etc., etc., etc.

– “Containers” to group elements and arrange them for display.

– “Listeners” and “events” to allow program to respond to user input.

Slide 4

Some GUI Classes

• Component — base class.

• Container – component that can contain other components.

• JFrame — window with titlebar, etc.; usually the “main” window for an

application.

• JDialog — popup dialog box.

• JPanel – very simple container, useful for grouping things, providing

custom graphics.

• JMenuBar.

• Etc., etc., etc., etc. — far more than we can cover in this course! Read the

API. Some classes have links to online tutorials too.



CSCI 1321 March 11, 2010

Slide 5

Using the GUI Classes — Appearance

• When using predefined components, key issue is how they’re grouped into

container and how things are laid out within each container.

• Preferred method for laying things out — layout manager, which places

elements in some reasonable way, does something reasonable if container is

resized.

– Simple layouts include FlowLayout, GridLayout,

BorderLayout, BoxLayout.

– GridBagLayout provides more control, but is more complex.

Some of them expand components to fit, others lay them out at their minimum

size. See API and tutorials for more info.

• Often makes sense to group elements hierarchically — JPanel is useful for

that.

Slide 6

Using the GUI Classes — Behavior

• Runtime system (JVM) translates each user action (keyboard or mouse input)

into an “event” and then calls method(s) in “event listener” objects.

• So, to tell the runtime system what should happen when, e.g., a JButton is

clicked, call button’s addActionListener with an object listener

that implements ActionListener interface. Now when the button is

clicked, listener’s actionPerformed method is called.

• Several approaches to defining listener objects. One is to have “main” class

implement required interface. Another is to use anonymous inner classes.



CSCI 1321 March 11, 2010

Slide 7

Java GUI Classes and Multithreading

• Currently Java GUI classes are implemented in terms of an “event dispatch

thread” (EDT) — something that listens (to some part of the operating

system/environment?) for “events” (from keyboard or mouse, e.g.) and

“dispatches” them by calling appropriate methods associated with GUI

components.

• Not all of what’s under the hood is thread-safe, so Sun recommends that all

changes to GUI components be done in the EDT. This happens automatically

with listener methods. Accesses from the “main” thread and from other

threads should use SwingUtilities.invokeLater.

Slide 8

Examples

• (Examples as time permits.)



CSCI 1321 March 11, 2010

Slide 9

Multithreading and the Game Framework

• Listener methods run in the EDT. Other methods run in a different thread.

• Problem? Maybe. Concurrent access to simple primitive types (boolean,

int) is pretty safe — the worst that’s likely to happen is that changes made

by one thread aren’t immediately visible to others. But anything involving

more complicated data structures is probably a bad idea without explicit

synchronization.

Slide 10

Minute Essay

• How did the midterm compare to your expectations? with regard to length,

difficulty, topics, or whatever?

• (And best wishes for a good spring break!)


