
CSCI 1321 April 6, 2010

Slide 1

Administrivia

• Reminder: Homework 4 code due today. Homework 5 design due Thursday.

Slide 2

Graphics in Java — Custom Components

• Predefined components (JButton, etc.) do a lot, but what if you want

something that’s not provided? in particular, you want to control the image

yourself?

• Make a custom component — define a subclass of a component that provides

some of the needed functionality, and override the method that defines what’s

displayed.

E.g., subclass JPanel and override paintComponent, to include your

code to “paint” the panel.

• Call repaint when ready to redisplay.



CSCI 1321 April 6, 2010

Slide 3

Custom Painting

• Method to override is

public void paintComponent(Graphics g).

g is a “graphics context” that you can draw on. (Actually it’s a

Graphics2D.) Tutorial recommends calling

super.paintComponent(g) before doing anything else.

• Can get dimensions of panel with getSize, getHeight, getWidth,

getInsets.

Slide 4

Custom Painting, Continued

• Can set colors, draw shapes, lines, text, etc., etc. — see Graphics and

Graphics2D classes. Coordinate system is similar to what you’re using in

your game. See code in BasicBlock for simple example.

• General advice — look over the methods of Graphics and

Graphics2D; if confused, follow links to tutorial(s) and look for a suitable

example to adapt.



CSCI 1321 April 6, 2010

Slide 5

Drawing and Filling Shapes

• “Draw” means draw outline only; “fill” to draw and fill.

• Graphics provides methods for doing simple shapes. Graphics2D

provides more general methods. (Look at some shapes in

java.awt.geom.)

• You already know (from your game) about simple ways to control color of

what’s painted. The Graphics2D class provides a lot more options (next

slide).

Slide 6

Drawing and Filling Shapes, Continued

• Graphics2D provides, among other things:

– setPaint to fill shapes with simple color, gradient fill, etc.

– setStroke to draw outlines with different widths, etc.

– setFont to draw text in different fonts. (This works for text components

such as JLabel too.)

• And there’s more — “clipping”, affine transformations (e.g., rotation —

transformations in which parallel lines stay parallel), etc., etc.

• (Examples as time permits.)



CSCI 1321 April 6, 2010

Slide 7

Minute Essay

• None — quiz.


