
CSCI 1321 April 22, 2010

Slide 1

Administrivia

• Reminder: Homework 6 code due today.

• (Homework 7 due dates on Web, writeup coming soon.)

Slide 2

Homework 7

• Writeup should be complete, but a short overview:

– Objective is to write an alternate implementation for priority queue ADT

and compare its performance to that of first implementation.

– To compare performance, need to (1) add something to code to measure

execution time, and (2) increase work being done by priority queue to the

point where performance differences will show up.

• You can find code for a heap-based priority queue lots of places, but you will

probably learn more if you write your own.

• Be sure to save a copy of your existing code before doing this, because you

shouldn’t include most of these changes in what you turn in as a “final” game

(Homework 8).



CSCI 1321 April 22, 2010

Slide 3

Command-Line Arguments

• Many mechanisms for starting programs provide a way of passing them

information without using files or standard input — “command-line

arguments”. Example — when you type at the command line

ls -l myfile

-l and myfile are passed to the ls in this way.

• C programs can receive command-line arguments by declaring main as

int main(int argc, char *argv[])

or equivalent, where argc is the number of arguments and argv is an

array of C-style strings. By convention the zero-th argument is something

identifying the program (e.g., its name). So in the ls example above, there

would be three arguments . . .

Slide 4

Command-Line Arguments, Continued

• Java main methods also receive command-line arguments via arguments

passed to main. main must always be declared with an argument of type

String[], which is a Java array containing the arguments. A Java

equivalent of ls would get only two arguments for the example of the

previous slide.

• Eclipse unfortunately doesn’t make it that easy to invoke programs with

command-line arguments that vary from execution to execution, but it’s

possible. An alternative is to run the program from the command line:

java MainClass arg1 arg2

or for your game something like

java -classpath bin:PAD2.jar MainClass arg1

arg2

(Replace “:” with “;” on Windows.)



CSCI 1321 April 22, 2010

Slide 5

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known

ports”, others available for applications.

Slide 6

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.



CSCI 1321 April 22, 2010

Slide 7

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”

example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).

Slide 8

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket. Program must define

protocol for the two sides to communicate.

• Simple example in binary-I/O program from last. More complex example —

chat program (next time).



CSCI 1321 April 22, 2010

Slide 9

Minute Essay

• None — quiz.


