CSCI 1321 April 22, 2010

Administrivia

o Reminder: Homework 6 code due today.

o (Homework 7 due dates on Web, writeup coming soon.)

Slide 1

Homework 7

e Writeup should be complete, but a short overview:

— Objective is to write an alternate implementation for priority queue ADT
and compare its performance to that of first implementation.

— To compare performance, need to (1) add something to code to measure
Slide 2 execution time, and (2) increase work being done by priority queue to the

point where performance differences will show up.

e You can find code for a heap-based priority queue lots of places, but you will

probably learn more if you write your own.

e Be sure to save a copy of your existing code before doing this, because you
shouldn’t include most of these changes in what you turn in as a “final” game
(Homework 8).

CSCI 1321 April 22, 2010

Command-Line Arguments

o Many mechanisms for starting programs provide a way of passing them
information without using files or standard input — “command-line
arguments”. Example — when you type at the command line

Is -1 nmyfile
Slide 3 -1 and myf i | e are passed to the | S in this way.

e C programs can receive command-line arguments by declaring mai n as
int min(int argc, char rargv[])
or equivalent, where ar gc is the number of arguments and ar gV is an
array of C-style strings. By convention the zero-th argument is something
identifying the program (e.g., its name). So in the | S example above, there
would be three arguments . ..

Command-Line Arguments, Continued

e Java mai N methods also receive command-line arguments via arguments
passed to MAI N. MAi N must always be declared with an argument of type
String[],whichis a Java array containing the arguments. A Java
equivalent of | S would get only two arguments for the example of the
previous slide.

Slide 4 e Eclipse unfortunately doesn’t make it that easy to invoke programs with

command-line arguments that vary from execution to execution, but it's

possible. An alternative is to run the program from the command line:
java Mai nC ass argl arg2

or for your game something like
java -classpath bin: PAD2.jar MinC ass argl
arg2

(Replace “:” with “;” on Windows.)

CSCI 1321 April 22, 2010

Networking Basics

e Inter-computer communication based on layered approach and “protocols”:
— Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

— Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

Slide 5 — Network level — IP (Internet Protocol — addressing, routing of packets).
— Link level — device drivers, etc.

e Messages are routed to
— A machine (“host”), identified by IPA or name.

— A process, identified by “port number” (16 bits). 0 — 1023 are “well-known
ports”, others available for applications.

Networking Basics — TCP and UDP

e UDP — independent messages, no guarantees about reliability or message
order — analogous to (snailmail) letter.

e TCP — point-to-point channel, guarantees reliability and message order —
analogous to phone call. Endpoints called “sockets”.

Slide 6

CSCI 1321 April 22, 2010

Networking in Java

e Classes for communicating at application level — e.g., URL (“show URL

example).

e Classes for communicating at network level:
- TCP — Socket , Ser ver Socket .
Slide 7 - UDP — Dat agr an.

o RMI (Remote Method Invocation).

Networking in Java — Sockets

e Client/server model:

— Server sets up “server socket” specifying port number, then waits to
accept connections. Connection generates socket.
— Client connects to server by giving name/IPA and port number —

Slide 8 generates a socket.

— On each side, get input/output streams for socket. Program must define
protocol for the two sides to communicate.

e Simple example in binary-1/O program from last. More complex example —

chat program (next time).

CSCIT 1321

April 22, 2010

Slide 9

e None — quiz.

